Skip to main content
Log in

Event-triggered output feedback control for feedforward nonlinear systems with unknown measurement sensitivity

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the event-triggered output feedback control problem for feedforward nonlinear systems with unknown measurement sensitivity. The nonlinear terms are assumed to be bounded by an unknown constant multiplied by fractional power of states and controller. We design an auxiliary system independent of the output signal to construct controller and propose a novel time-varying triggering mechanism. It is the first time to introduce the logarithmic function into the auxiliary system and state transformation to deal with event-triggered control problem. Under the designed event-triggered controller, the convergence of all states is obtained and the Zeno behavior is effectively avoided. Finally, two numerical examples are presented to demonstrate the effectiveness of the designed event-triggered controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang, X., Liu, Q., Baron, L., Boukas, E.: Feedback stabilization for high order feedforward nonlinear time-delay systems. Automatica 47(5), 962–967 (2011)

    Article  MathSciNet  Google Scholar 

  2. Chen, C., Qian, C., Sun, Z., Liang, Y.: Global output feedback stabilization of a class of nonlinear systems with unknown measurement sensitivity. IEEE Trans. Autom. Control 63(7), 2212–2217 (2018)

    Article  MathSciNet  Google Scholar 

  3. Zhou, X., Gao, C., Li, Z., Ouyang, X., Wu, L.: Observer-based adaptive fuzzy finite-time prescribed performance tracking control for strict-feedback systems with input dead-zone and saturation. Nonlinear Dyn. 103, 1645–1661 (2021)

    Article  Google Scholar 

  4. Antsaklis, P., Baillieul, J.: Special issue on technology of networked control systems. Proc. IEEE 95(1), 5–8 (2007)

    Article  Google Scholar 

  5. Hespanha, J., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proc. IEEE 95(1), 138–162 (2007)

    Article  Google Scholar 

  6. Karafyllis, I., Krstic, M.: Nonlinear stabilization under sampled and delayed measurements, and with inputs subject to delay and zero-order hold. IEEE Trans. Autom. Control 57(5), 1141–1154 (2012)

    Article  MathSciNet  Google Scholar 

  7. Su, Z., Qian, C., Hao, Y.: Global stabilization via sampled-data output feedback for large-scale systems interconnected by inherent nonlinearities. Automatica 92(92), 254–258 (2018)

    Article  MathSciNet  Google Scholar 

  8. Astrom, K., Bernhardsson, B.: Comparison of periodic and event based sampling for first-order stochastic systems. IFAC Proc. Vol. 32(2), 5006–5011 (1999)

    Article  Google Scholar 

  9. Abdelrahim, M., Postoyan, R., Daafouz, J., Nesic, D.: Robust event-triggered output feedback controllers for nonlinear systems. Automatica 75(75), 96–108 (2017)

    Article  MathSciNet  Google Scholar 

  10. Postoyan, R., Tabuada, P., Nesic, D., Anta, A.: A framework for the event-triggered stabilization of nonlinear systems. IEEE Trans. Autom. Control 60(4), 982–996 (2015)

    Article  MathSciNet  Google Scholar 

  11. Nozari, E., Tallapragada, P., Cortes, J.: Event-triggered stabilization of nonlinear systems with time-varying sensing and actuation delay. Automatica 113, 108754 (2020)

    Article  MathSciNet  Google Scholar 

  12. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    Article  MathSciNet  Google Scholar 

  13. Wang, A., Liu, L., Qiu, J., Feng, G.: Event-triggered robust adaptive fuzzy control for a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 27(8), 1648–1658 (2019)

    Article  Google Scholar 

  14. Choi, Y., Yoo, S.: Event-triggered output-feedback tracking of a class of nonlinear systems with unknown time delays. Nonlinear Dyn. 96(2), 959–973 (2019)

    Article  Google Scholar 

  15. Li, T., Wen, C., Yang, J., Li, S., Duo, L.: Event-triggered tracking control for nonlinear systems subject to time-varying external disturbances. Automatica 119, 109070 (2020)

    Article  MathSciNet  Google Scholar 

  16. Ling, S., Wang, H., Liu, P.X.: Fixed-time adaptive event-triggered tracking control of uncertain nonlinear systems. Nonlinear Dyn. 100, 3381–3397 (2020)

    Article  Google Scholar 

  17. Lian, J., Li, C.: Event-triggered control for a class of switched uncertain nonlinear systems. Syst. Control Lett. 135, 104592 (2020)

    Article  MathSciNet  Google Scholar 

  18. Zhang, C., Yang, G.: Event-triggered control for a class of strictfeedback nonlinear systems. Int. J. Robust Nonlinear Control 29(7), 2112–2124 (2019)

    Article  Google Scholar 

  19. Zhang, K., Zhao, T., Dian, S.: Dynamic output feedback control for nonlinear networked control systems with a two-terminal event-triggered mechanism. Nonlinear Dyn. 100, 2537–2555 (2020)

    Article  Google Scholar 

  20. Li, H., Liu, Y., Huang, Y.: Event-triggered controller via adaptive output-feedback for a class of uncertain nonlinear systems. Int. J. Control (2020). https://doi.org/10.1080/00207179.2020.1718771

    Article  Google Scholar 

  21. You, X., Hua, C., Guan, X.: Event-triggered leader-following consensus for nonlinear multiagent systems subject to actuator saturation using dynamic output feedback method. IEEE Trans. Autom. Control 63(12), 4391–4396 (2018)

    Article  MathSciNet  Google Scholar 

  22. Zhang, X., Baron, L., Liu, Q., Boukas, E.: Design of stabilizing controllers with a dynamic gain for feedforward nonlinear time-delay systems. IEEE Trans. Autom. Control 56(3), 692–697 (2011)

    Article  MathSciNet  Google Scholar 

  23. Li, H., Zhang, X., Li, M.: Design of output feedback controller for stochastic feedforward systems with unknown measurement sensitivity. ISA Trans. 97, 182–188 (2020)

    Article  Google Scholar 

  24. Liu, Q., Zhang, X., Li, H.: Global regulation for feedforward systems with both discrete delays and distributed delays. Automatica 113, 108753 (2020)

    Article  MathSciNet  Google Scholar 

  25. Li, H., Liu, Q., Zhang, X.: On designing event-triggered output feedback tracking controller for feedforward nonlinear systems. IEEE Trans. Circuits-II 68(2), 677–681 (2021)

    Google Scholar 

  26. Bernstein, D.: Sensor performance specifications. IEEE Control Syst. Mag. 21(4), 9–18 (2001)

  27. Liu, S., Quevedo, D., Xie, H.: Event-triggered distributed constrained consensus. Int. J. Robust Nonlinear Control 27, 3043–3060 (2017)

    Article  MathSciNet  Google Scholar 

  28. Koo, M., Choi, H., Lim, J.: Global regulation of a class of uncertain nonlinear systems by switching adaptive controller. IEEE Trans. Autom. Control 55(12), 2822–2827 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the Foundation for Innovative Research Groups of National Natural Science Foundation of China (61821004), the National Natural Science Foundation of China (62073190 and 61973189), the Natural Science Foundation of Shandong Province of China (ZR2018MA007), and the Research Fund for the Taishan Scholar Project of Shandong Province of China (ts20190905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, the estimations for nonlinear terms of (6) and (12) are presented.

From Assumption 1 and state transformations (4) and (7), we get

$$\begin{aligned}&|(\ln (t+\tau ))^{i}f_{i}|\\&\quad \le (\ln (t+\tau ))^{i}\left( \gamma \sum _{j=i+2}^{n}|x_{j}|^{\frac{n-1+\Delta }{n}}+\gamma |(u-\omega )+\omega |^{\frac{n-1+\Delta }{n}}\right) \\&\quad \le \gamma \sum _{j=i+2}^{n}\frac{(\ln (t+\tau ))^{i}}{(\ln (t+\tau ))^{\frac{j(n-1+\Delta )}{n}}}|\varepsilon _{j}+L^{j-1}z_{j}|^{\frac{n-1+\Delta }{n}}\\&\qquad +\gamma (\ln (t+\tau ))^{i}\left( \frac{\delta _{1} L^{n-1}}{(\ln (t+3))^{n+1}}+\frac{L^{n}\sum _{j=1}^{n}{\hat{b}}_{j}|z_{j}|}{\ln (t+\tau )^{n+1}}\right) ^{\frac{n-1+\Delta }{n}} \end{aligned}$$
$$\begin{aligned}&\le \frac{\gamma }{(\ln (t+\tau ))^{1+\sigma _{2}}} \sum _{j=i+2}^{n}|\varepsilon _{j}+L^{j-1}z_{j}|^{\sigma _{1}}+\frac{\gamma (\ln (t+\tau ))^{i}}{(\ln (t+\tau ))^{(n+1)\sigma _{1}}}\\&\qquad \times \bigg (\frac{\delta _{1} L^{n-1}(\ln (t+\tau ))^{n+1}}{(\ln (t+3))^{n+1}}+L^{n}\sum _{j=1}^{n}{\hat{b}}_{j}|z_{j}|\bigg ) ^{\sigma _{1}}\\&\quad \le \frac{\gamma }{(\ln (t+\tau ))^{1+\sigma _{2}}}\bigg (\sum _{j=i+2}^{n}|\varepsilon _{j}+L^{j-1}z_{j}|^{\sigma _{1}}\\&\qquad +\bigg (\frac{\delta _{1} L^{n-1}(\ln (t+\tau ))^{n+1}}{(\ln (t+3))^{n+1}}+L^{n}\sum _{j=1}^{n}{\hat{b}}_{j}|z_{j}|\bigg ) ^{\sigma _{1}}\bigg ), \end{aligned}$$

where \(\sigma _{1}=\frac{n-1+\Delta }{n}\), and \(\sigma _{2}{=}\min \{\frac{3\Delta }{n}{,}\frac{(n{+}1)\Delta {-}1}{n}\}>0\), \({\hat{b}}_{1}=\max \limits _{t>0}|\theta (t)|b_{1}\), and \({\hat{b}}_{j}=b_{j}, j=2,\ldots ,n\).

By Lemmas 3 and 4, we obtain the following inequality

$$\begin{aligned} \begin{aligned}&\sum _{j=1}^{n}|\varepsilon _{j}||(\ln (t+\tau ))^{i}f_{i}|\\&\quad \le \frac{2^{n\sigma _{1}}\gamma }{(\ln (t+\tau ))^{1+\sigma _{2}}}\bigg ((n-1)\sum \limits _{j=1}^{n} |\varepsilon _{j}|^{1+\sigma _{1}}\\&\qquad +n\sum \limits _{j=i+2}^{n}(|\varepsilon _{j}|^{1+\sigma _{1}}+L^{2n}|z_{j}|^{1+\sigma _{1}})\\&\qquad +n\bigg (\frac{\delta _{1} L^{n-1}(\ln (t+\tau ))^{n+1}}{(\ln (t+3))^{n+1}}\bigg )^{1+\sigma _{1}}\\&\qquad +nL^{2n}\sum _{j=1}^{n}{\hat{b}}_{j}^{1+\sigma _{1}}|z_{j}|^{1+\sigma _{1}}\bigg ) \\&\quad \le \frac{2^{n\sigma _{1}}\gamma }{(\ln (t+\tau ))^{1+\sigma _{2}}}\bigg ((2n-1)\sum \limits _{j=1}^{n}|\varepsilon _{j}|^{1+\sigma _{1}}\\&\qquad +nL^{2n}\sum _{j=1}^{n}(1+{\hat{b}}_{j}^{1+\sigma _{1}})|z_{j}|^{1+\sigma _{1}}\\&\qquad +n\bigg (\frac{\delta _{1} L^{n-1}(\ln (t+\tau ))^{n+1}}{(\ln (t+3))^{n+1}}\bigg )^{1+\sigma _{1}}\bigg ), \end{aligned} \end{aligned}$$

and we further have

$$\begin{aligned}&|2\varepsilon ^{T}P_{\varepsilon }F|\\&\quad \le 2\sqrt{n}\left( \sum _{i=1}^{n}|{\tilde{p}}_{1i}||\varepsilon _{1}|+\ldots +\sum _{i=1}^{n}|{\tilde{p}}_{ni}||\varepsilon _{n}|\right) \Vert F\Vert \\&\quad \le 2n{\tilde{p}}\sum _{j=1}^{n}|\varepsilon _{j}|\sum _{i=1}^{n-1}|(\ln (t+\tau ))^{i}f_{i}|\\&\quad \le \frac{2^{1+n\sigma _{1}}n^{2}\gamma {\tilde{p}}}{(\ln (t+\tau ))^{1+\sigma _{2}}}\bigg ((2n-1)\sum \limits _{j=1}^{n}|\varepsilon _{j}|^{1+\sigma _{1}}\\&\qquad +nL^{2n}\sum _{j=1}^{n}(1+{\hat{b}}_{j}^{1+\sigma _{1}})|z_{j}|^{1+\sigma _{1}}\\&\qquad +n\bigg (\frac{\delta _{1} L^{n-1}(\ln (t+\tau ))^{n+1}}{(\ln (t+3))^{n+1}}\bigg )^{1+\sigma _{1}}\bigg ).\\ \end{aligned}$$

With the help of

$$\begin{aligned} \begin{aligned} \sum \limits _{j=1}^{n}|\varepsilon _{j}|^{1+\sigma _{1}}&\le \sqrt{n}\left( \sum \limits _{j=1}^{n}|\varepsilon _{j}|^{2(1+\sigma _{1})}\right) ^{\frac{1}{2}}\le \sqrt{n}\left( \sum \limits _{j=1}^{n}|\varepsilon _{j}|^{2}\right) ^{\frac{1+\sigma _{1}}{2}}\\&\le \sqrt{n}\Vert \varepsilon \Vert ^{1+\sigma _{1}}, \end{aligned} \end{aligned}$$

the following inequality can be obtained

$$\begin{aligned} \begin{aligned} |2\varepsilon ^{T}P_{\varepsilon }F|&\le \frac{k_{1}\Vert \varepsilon \Vert ^{1+\sigma _{1}}}{(\ln (t+\tau ))^{1+\sigma _{2}}} +\frac{k_{2}\Vert z\Vert ^{1+\sigma _{1}}}{(\ln (t+\tau ))^{1+\sigma _{2}}}\\&\quad +\frac{k_{3}}{(\ln (t+\tau ))^{1+\sigma _{2}}}\bigg (\frac{(\ln (t+\tau )}{\ln (t+3)}\bigg )^{(n+1)(1+\sigma _{1})}, \end{aligned} \end{aligned}$$

where \(k_{1}=(1+\max \{{\hat{b}}_{i}\})(2n-1)n^{3}2^{1+n\sigma _{1}}\gamma {\tilde{p}}\), \(k_{2}=k_{1}L^{2n}\), \(k_{3}=k_{1}(\delta _{1} L^{n-1})^{1+\sigma _{1}}\), \({\tilde{p}}=\max \{ \sum _{i=1}^{n}|{\tilde{p}}_{1i}|, \ldots , \sum _{i=1}^{n}|{\tilde{p}}_{ni}|\}\) and \({\tilde{p}}_{ij}\) is the element of \(P_{\varepsilon }\).

Using the same method, the estimation for the nonlinear terms of (12) can be obtained as follows

$$\begin{aligned} \begin{aligned}&|2\ln (t+\tau )z^{T}P_{z}C_{1}f_{1}|\\&\quad \le \frac{k_{4}}{(\ln (t+\tau ))^{1+\sigma _{2}}}\Vert \varepsilon \Vert ^{1+\sigma _{1}} +\frac{k_{5}}{(\ln (t+\tau ))^{1+\sigma _{2}}}\Vert z\Vert ^{1+\sigma _{1}}\\&\qquad +\frac{k_{6}}{(\ln (t+\tau ))^{1+\sigma _{2}}}\bigg (\frac{(\ln (t+\tau )}{\ln (t+3)}\bigg )^{(n+1)(1+\sigma _{1})}, \end{aligned} \end{aligned}$$

where \(k_{4}=(1+\max \{{\hat{b}}_{i}\})(2n-1)n^{2}2^{1+n\sigma _{1}}\gamma p\), \(k_{5}=k_{4}L^{2n}\), \(k_{6}=k_{4}(\delta _{1} L^{n-1})^{1+\sigma _{1}}\), \(p=\max \{|p_{11}|,\ldots , |p_{n1}|\}\) and \(p_{i1}\) is the element of \(P_{z}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Zhang, X., Liu, S. et al. Event-triggered output feedback control for feedforward nonlinear systems with unknown measurement sensitivity. Nonlinear Dyn 104, 3781–3791 (2021). https://doi.org/10.1007/s11071-021-06501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06501-4

Keywords

Navigation