Skip to main content
Log in

Research on nonlinear vibration control of laminated cylindrical shells with discontinuous piezoelectric layer

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A model of laminated cylindrical shells with discontinuous piezoelectric layer is proposed. Based on the first-order shear nonlinear shell theory, the nonlinear vibration control of the piezoelectric laminated cylindrical shell model with point-supported elastic boundary condition is analyzed. In this model, a series of artificial springs are introduced to simulate the arbitrary boundary conditions. And the elastic-electrically coupled differential equations of piezoelectric laminated cylindrical shells are obtained by the Chebyshev polynomials and Lagrange equations and decoupled by using the negative velocity feedback adjustment. Then, the frequency–amplitude responses of the piezoelectric laminated cylindrical shells are obtained by the incremental harmonic balance method. Finally, the influence of the constant gain, size, and position of the piezoelectric layer on the nonlinear amplitude–frequency response is investigated. The results show that the constant gain and the position and size of the piezoelectric layer have a significant influence on the amplitude of the nonlinear amplitude–frequency and time–frequency response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dey, T., Ramachandra, L.S.: Non-linear vibration analysis of laminated composite circular cylindrical shells. Compos. Struct. 163, 89–100 (2017)

    Article  Google Scholar 

  2. Li, C.F., Zhang, Z.X., Yang, Q.Y., Li, P.Y.: Experiments on the geometrically nonlinear vibration of a thin-walled cylindrical shell with points supported boundary condition. J. Sound Vib. 473, 115226 (2020)

    Article  Google Scholar 

  3. Wei, Z.C., Zhu, B., Yang, J., Perc, M., Slavinec, M.: Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays. Appl. Math. Comput. 347, 265–281 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Zhao, X., Liew, K.M.: Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method. Comput. Methods Appl. Mech. Eng. 198, 2796–2811 (2009)

    Article  Google Scholar 

  5. Zhang, Y., Sun, W., Yang, J., Han, Q.K.: Analytical analysis of forced vibration of the hard-coating cylindrical shell with material nonlinearity and elastic constraint. Compos. Struct. 187, 281–293 (2018)

    Article  Google Scholar 

  6. Tzou, H.S., Gadre, M.: Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration controls. J. Sound Vib. 132, 433–450 (1989)

    Article  Google Scholar 

  7. Tzou, H.S.: Piezoelectric shells. Solid Mech. Appl. 50, 98–105 (1993)

    Google Scholar 

  8. Kerur, S.B., Ghosh, A.: Active vibration control of composite plate using afc actuator and pvdf sensor. Int. J. Struct. Stab. Dyn. 11, 237–255 (2011)

    Article  MathSciNet  Google Scholar 

  9. Parashar, S.K., Kumar, A.: Three-dimensional analytical modeling of vibration behavior of piezoceramic cylindrical shells. Arch. Appl. Mech. 85, 641–656 (2015)

    Article  Google Scholar 

  10. Sheng, G.G., Wang, X.: Studies on dynamic behavior of functionally graded cylindrical shells with PZT layers under moving loads. J. Sound Vib. 323, 772–789 (2009)

    Article  Google Scholar 

  11. Qin, Z.Y., Chu, F.L., Zu, J.: Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study. Int. J. Mech. Sci. 133, 91–99 (2017)

    Article  Google Scholar 

  12. Qin, Z.Y., Pang, X.J., Safaei, B., Chu, F.L.: Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Compos. Struct. 220, 847–860 (2019)

    Article  Google Scholar 

  13. Li, C.F., Li, P.Y., Zhang, Z.X., Wen, B.C.: Optimal locations of discontinuous piezoelectric laminated cylindrical shell with point supported elastic boundary conditions for vibration control. Compos. Struct. 233, 111575 (2019)

    Article  Google Scholar 

  14. Amabili, M.: Nonlinear vibrations of laminated circular cylindrical shells: Comparison of different shell theories. Compos. Struct. 94, 207–220 (2011)

    Article  Google Scholar 

  15. Jansen, E.L.: The effect of static loading and imperfections on the nonlinear vibrations of laminated cylindrical shells. J. Sound Vib. 315, 1035–1046 (2008)

    Article  Google Scholar 

  16. Park, M., Przekop, A., Phairoh, T., Huang, J.K., Mei, C.: Adaptive control of nonlinear free vibration of shallow shell using piezoelectric actuators. AIAA J. 49, 472–488 (2011)

    Article  Google Scholar 

  17. Rafiee, M., Mohammadi, M., Aragh, B.S., Yaghoobi, H.: Nonlinear free and forced thermo-electro-aero-elastic vibration and dynamic response of piezoelectric functionally graded laminated composite shells: part II: numerical results. Compos. Struct. 103, 188–196 (2013)

    Article  Google Scholar 

  18. Rafiee, M., Mohammadi, M., Aragh, B.S., Yaghoobi, H.: Nonlinear free and forced thermo-electro-aero-elastic vibration and dynamic response of piezoelectric functionally graded laminated composite shells, part I: theory and analytical solutions. Compos. Struct. 103, 179–187 (2013)

    Article  Google Scholar 

  19. Sheng, G.G., Wang, X.: Nonlinear vibration control of functionally graded laminated cylindrical shells. Compos. B Eng. 52, 1–10 (2013)

    Article  Google Scholar 

  20. Shen, H.S., Yang, D.Q.: Nonlinear vibration of anisotropic laminated cylindrical shells with piezoelectric fiber reinforced composite actuators. Ocean Eng. 80, 36–49 (2014)

    Article  Google Scholar 

  21. Zhang, S.Q., Li, Y.X., Schmidt, R.: Active shape and vibration control for piezoelectric bonded composite structures using various geometric nonlinearities. Compos. Struct. 122, 239–249 (2015)

    Article  Google Scholar 

  22. Yue, H.H., Lu, Y.F., Deng, Z.Q., Tzou, H.: Experiments on vibration control of a piezoelectric laminated paraboloidal shell. Mech. Syst. Signal Process. 82, 279–295 (2017)

    Article  Google Scholar 

  23. Ninh, D.G., Bich, D.H.: Characteristics of nonlinear vibration of nanocomposite cylindrical shells with piezoelectric actuators under thermo-mechanical loads. Aerosp. Sci. Technol. 77, 595–609 (2018)

    Article  Google Scholar 

  24. Chen, Y.H., Jin, G.Y., Liu, Z.G.: Free vibration analysis of circular cylindrical shell with non-uniform elastic boundary constraints. Int. J. Mech. Sci. 74, 120–132 (2013)

    Article  Google Scholar 

  25. Xie, K., Chen, M.X., Zhang, L., Xie, D.: Free and forced vibration analysis of non-uniformly supported cylindrical shells through wave based method. Int. J. Mech. Sci. 128, 512–526 (2017)

    Article  Google Scholar 

  26. Li, C.F., Li, P., Zhong, B.F., Wen, B.C.: Geometrically nonlinear vibration of laminated composite cylindrical thin shells with non-continuous elastic boundary conditions. Nonlinear Dyn. 95, 1903–1921 (2019)

    Article  Google Scholar 

  27. Li, C.F., Miao, B.Q., Tang, Q.S., Xi, C.Y., Wen, B.C.: Nonlinear vibrations analysis of rotating drum-disk coupling structure. J. Sound Vib. 420, 35–60 (2018)

    Article  Google Scholar 

  28. Tang, Q.S., Li, C.F., Wen, B.C.: Analysis on forced vibration of thin-wall cylindrical shell with nonlinear boundary condition. Shock Vib 2016, 1–22 (2016)

    Google Scholar 

  29. Tang, Q.S., Li, C.F., She, H.X., Wen, B.C.: Modeling and dynamic analysis of bolted joined cylindrical shell. Nonlinear Dyn. 93, 1953–1975 (2018)

    Article  Google Scholar 

  30. Li, P.Y., Li, C.F., Qiao, R.H., Wen, B.C.: Sensitivity on the non-continuous supported laminated cylindrical shell to boundary conditions and lamination schemes. Arch. Appl. Mech. 89, 2245–2264 (2019)

    Article  Google Scholar 

  31. Zhai, J.J., Zhao, G.Z., Shang, L.Y.: Integrated design optimization of structural size and control system of piezoelectric curved shells with respect to sound radiation. Struct. Multidiscip. Optim. 56, 1287–1304 (2017)

    Article  Google Scholar 

  32. To, C.W.S., Chen, T.: Optimal control of random vibration in plate and shell structures with distributed piezoelectric components. Int. J. Mech. Sci. 49, 1389–1398 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by the National Natural Science Foundation of China (No.52075086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaofeng Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Expressions for the generalized coordinates

$$ \begin{aligned} {\varvec{q}}_{u} & =\left[ {a_{11} \, a_{12} \, \cdot \cdot \cdot a_{1n} \, a_{21} \, a_{22} \, \cdot \cdot \cdot a_{2n} \, \cdot \cdot \cdot a_{mn} \, {\mathbf{0}}} \right]^{{\text{T}}} e^{ - j\omega t} \\ {\varvec{q}}_{v} & =\left[ {b_{11} \, b_{12} \, \cdot \cdot \cdot b_{1n} \, b_{21} \, b_{22} \, \cdot \cdot \cdot b_{2n} \, \cdot \cdot \cdot b_{mn} \, {\mathbf{0}}} \right]^{{\text{T}}} e^{ - j\omega t} \\ {\varvec{q}}_{w} & =\left[ {c_{11} \, c_{12} \, \cdot \cdot \cdot c_{1n} \, c_{21} \, c_{22} \, \cdot \cdot \cdot c_{2n} \, \cdot \cdot \cdot c_{mn} \, c_{1} \, c_{2} \, \cdot \cdot \cdot c_{m} } \right]^{{\text{T}}} e^{ - j\omega t} \\ {\varvec{q}}_{{\phi_{x} }} & =\left[ {d_{11} \, d_{12} \, \cdot \cdot \cdot d_{1n} \, d_{21} \, d_{22} \, \cdot \cdot \cdot d_{2n} \, \cdot \cdot \cdot d_{mn} \, {\mathbf{0}}} \right]^{{\text{T}}} e^{ - j\omega t} \\ {\varvec{q}}_{{\phi_{\theta } }} & =\left[ {e_{11} \, e_{12} \, \cdot \cdot \cdot e_{1n} \, e_{21} \, e_{22} \, \cdot \cdot \cdot e_{2n} \, \cdot \cdot \cdot e_{mn} \, {\mathbf{0}}} \right]^{{\text{T}}} e^{ - j\omega t} \\ {\varvec{q}}_{{\psi_{\text{s}} }} & =\left[ {f_{11} \, f_{12} \, \cdot \cdot \cdot f_{1n} \, f_{21} \, f_{22} \, \cdot \cdot \cdot f_{2n} \, \cdot \cdot \cdot f_{mn} \, {\mathbf{0}}} \right]^{{\text{T}}} e^{ - j\omega t} \\ {\varvec{q}}_{{\psi_{\text{a}} }} & =\left[ {g_{11} \, g_{12} \, \cdot \cdot \cdot g_{1n} \, g_{21} \, g_{22} \, \cdot \cdot \cdot g_{2n} \, \cdot \cdot \cdot g_{mn} \, {\mathbf{0}}} \right]^{{\text{T}}} e^{ - j\omega t} \\ \end{aligned} $$
(33)

where 0 is a 1 × m zero vector, so that all the vectors \({\varvec{q}}_{u} ,{\varvec{q}}_{v} \cdots {\varvec{q}}_{{\psi_{{\text{a}}} }}\) have the same dimension.

Appendix B: Expressions for the mass matrix M

The generalized mass matrix of the piezoelectric laminated shell is expressed as

$$ \user2{M}_{{qq}} = \left[ {\begin{array}{*{20}l} {\user2{M}^{{uu}} } \hfill & 0 \hfill & 0 \hfill & {\frac{1}{2}\user2{M}^{{u\phi _{x} }} } \hfill & 0 \hfill \\ 0 \hfill & {\user2{M}^{{vv}} } \hfill & 0 \hfill & 0 \hfill & {\frac{1}{2}\user2{M}^{{v\phi _{\theta } }} } \hfill \\ 0 \hfill & 0 \hfill & {\user2{M}^{{ww}} } \hfill & 0 \hfill & 0 \hfill \\ {\frac{1}{2}\user2{M}^{{u\phi _{x} \text{T}}} } \hfill & 0 \hfill & 0 \hfill & {\user2{M}^{{\phi _{x} \phi _{x} }} } \hfill & 0 \hfill \\ 0 \hfill & {\frac{1}{2}\user2{M}^{{v\phi _{\theta } \text{T}}} } \hfill & 0 \hfill & 0 \hfill & {\user2{M}^{{\phi _{\theta } \phi _{\theta } }} } \hfill \\ \end{array} } \right] $$
(34)

where

$$ \begin{aligned} {\varvec{M}}^{uu} & = LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\user2{\overline{U}\overline{U}}^{\text{T}} } } {\text{d}}\xi {\text{d}}\theta } \cdot I_{0} {\kern 1pt} {\kern 1pt} + LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta^{\prime}}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\user2{\overline{U}\overline{U}}^{\text{T}} } \text{d}\xi \text{d}\theta } \cdot \widetilde{I}_{0} {\kern 1pt} } \\ {\varvec{M}}^{uu} & = LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\user2{\overline{U}\overline{U}}^{\text{T}} } } {\text{d}}\xi {\text{d}}\theta } \cdot I_{0} {\kern 1pt} {\kern 1pt} + LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta^{\prime}}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\user2{\overline{U}\overline{U}}^{\text{T}} } \text{d}\xi \text{d}\theta } \cdot \widetilde{I}_{0} {\kern 1pt} } \\ {\varvec{M}}^{{u\phi_{x} }} & = {2}LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\user2{\overline{U}\overline{\Phi }}_{x}^{\text{T}} } } {\text{d}}\xi {\text{d}}\theta } \cdot I_{1} {\kern 1pt} {\kern 1pt} + 2LR{\kern 1pt} \sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta^{\prime}}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\user2{\overline{U}\overline{\Phi }}_{x}^{\text{T}} } \text{d}\xi \text{d}\theta } \cdot \widetilde{I}_{1} {\kern 1pt} } \\ {\varvec{M}}^{vv} & = LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\user2{\overline{V}\overline{V}}^{\text{T}} } } {\text{d}}\xi {\text{d}}\theta } \cdot I_{0} {\kern 1pt} {\kern 1pt} + LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta^{\prime}}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\user2{\overline{V}\overline{V}}^{\text{T}} } \text{d}\xi \text{d}\theta } \cdot \widetilde{I}_{0} {\kern 1pt} } \\ {\varvec{M}}^{{v\phi_{\theta } }} & = {2}LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\user2{\overline{U}\overline{\Phi }}_{\theta }^{\text{T}} } } {\text{d}}\xi {\text{d}}\theta } \cdot I_{1} {\kern 1pt} {\kern 1pt} + 2LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta^{\prime}}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\user2{\overline{U}\overline{\Phi }}_{\theta }^{\text{T}} } \text{d}\xi \text{d}\theta } \cdot \widetilde{I}_{1} {\kern 1pt} } \\ {\varvec{M}}^{ww} & = LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\user2{\overline{W}\overline{W}}^{\text{T}} } } {\text{d}}\xi {\text{d}}\theta } \cdot I_{0} {\kern 1pt} {\kern 1pt} + LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta^{\prime}}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\user2{\overline{W}\overline{W}}^{\text{T}} } \text{d}\xi \text{d}\theta } \cdot \widetilde{I}_{0} {\kern 1pt} } \\ {\varvec{M}}^{{\phi_{x} \phi_{x} }} & = LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\overline{\user2{\Phi }}_{x} \overline{\user2{\Phi }}_{x}^{\text{T}} } } {\text{d}}\xi {\text{d}}\theta } \cdot I_{2} {\kern 1pt} {\kern 1pt} + LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta^{\prime}}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\overline{\user2{\Phi }}_{x} \overline{\user2{\Phi }}_{x}^{\text{T}} } \text{d}\xi \text{d}\theta } \cdot \widetilde{I}_{2} {\kern 1pt} } \\ {\varvec{M}}^{{\phi_{\theta } \phi_{\theta } }} & = LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\overline{\user2{\Phi }}_{\theta } \overline{\user2{\Phi }}_{\theta }^{\text{T}} } } {\text{d}}\xi {\text{d}}\theta } \cdot I_{2} {\kern 1pt} {\kern 1pt} + LR{\kern 1pt} \sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta^{\prime}}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\overline{\user2{\Phi }}_{\theta } \overline{\user2{\Phi }}_{\theta }^{\text{T}} } \text{d}\xi \text{d}\theta } \cdot \widetilde{I}_{2} {\kern 1pt} } \\ \end{aligned} $$

Appendix C: Expressions of the stiffness matrix K

The generalized stiffness matrix of the piezoelectric laminated shell is expressed as

$$ \user2{K}_{{qq}} {\text{ = }}\left[ {\begin{array}{*{20}l} {\user2{K}^{{uu}} } \hfill & {\frac{1}{2}\user2{K}^{{uv}} } \hfill & {\frac{1}{2}\user2{K}^{{uw}} } \hfill & {\frac{1}{2}\user2{K}^{{u\phi _{x} }} } \hfill & {\frac{1}{2}\user2{K}^{{u\phi _{\theta } }} } \hfill \\ {\frac{1}{2}\user2{K}^{{uv{T}}} } \hfill & {\user2{K}^{{vv}} } \hfill & {\frac{1}{2}\user2{K}^{{vw}} } \hfill & {\frac{1}{2}\user2{K}^{{v\phi _{x} }} } \hfill & {\frac{1}{2}\user2{K}^{{v\phi _{\theta } }} } \hfill \\ {\frac{1}{2}\user2{K}^{{uw{T}}} } \hfill & {\frac{1}{2}\user2{K}^{{vw{T}}} } \hfill & {\user2{K}^{{ww}} } \hfill & {\frac{1}{2}\user2{K}^{{w\phi _{x} }} } \hfill & {\frac{1}{2}\user2{K}^{{w\phi _{\theta } }} } \hfill \\ {\frac{1}{2}\user2{K}^{{u\phi _{x} {T}}} } \hfill & {\frac{1}{2}\user2{K}^{{v\phi _{x} {T}}} } \hfill & {\frac{1}{2}\user2{K}^{{w\phi _{x} {T}}} } \hfill & {\user2{K}^{{\phi _{x} \phi _{x} }} } \hfill & {\frac{1}{2}\user2{K}^{{\phi _{x} \phi _{\theta } }} } \hfill \\ {\frac{1}{2}\user2{K}^{{u\phi _{\theta } {T}}} } \hfill & {\frac{1}{2}\user2{K}^{{v\phi _{\theta } {T}}} } \hfill & {\frac{1}{2}\user2{K}^{{w\phi _{\theta } {T}}} } \hfill & {\frac{1}{2}\user2{K}^{{\phi _{x} \phi _{\theta } {T}}} } \hfill & {\user2{K}^{{\phi _{\theta } \phi _{\theta } }} } \hfill \\ \end{array} } \right]$$
(35)

where

$$ \begin{aligned} {\varvec{K}}^{uu} & =LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\left( {\frac{{A_{11} }}{{L^{2} }}\frac{{\partial \overline{\user2{U}}}}{\partial \xi }\frac{{\partial \overline{\user2{U}}^{\text{T}} }}{\partial \xi } + \frac{{A_{{{66}}} }}{{R^{2} }}\frac{{\partial \overline{\user2{U}}}}{\partial \theta }\frac{{\partial \overline{\user2{U}}^{\text{T}} }}{\partial \theta }} \right)} } {\text{d}}\xi {\text{d}}\theta } \\ & \quad + \,LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( {\frac{{\tilde{A}_{11} }}{{L^{2} }}\frac{{\partial \overline{\user2{U}}}}{\partial \xi }\frac{{\partial \overline{\user2{U}}^{\text{T}} }}{\partial \xi } + \frac{{\tilde{A}_{{{66}}} }}{{R^{2} }}\frac{{\partial \overline{\user2{U}}}}{\partial \theta }\frac{{\partial \overline{\user2{U}}^{\text{T}} }}{\partial \theta }} \right)} } } {\text{d}}\xi {\text{d}}\theta \\ \end{aligned} $$
$$ \begin{aligned} {\varvec{K}}^{uv} & =LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\left( {\frac{{2{\mkern 1mu} A_{12} }}{{L{\mkern 1mu} R}}\frac{{\partial \overline{\user2{U}}}}{\partial \xi }\frac{{\partial \overline{\user2{V}}^{\text{T}} }}{\partial \theta } + \frac{{2{\mkern 1mu} A_{{{66}}} }}{{L{\mkern 1mu} R}}\frac{{\partial \overline{\user2{U}}}}{\partial \theta }\frac{{\partial \overline{\user2{V}}^{\text{T}} }}{\partial \xi }} \right)} } {\text{d}}\xi {\text{d}}\theta } \\ & \quad + \,LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( {\frac{{2{\mkern 1mu} \tilde{A}_{12} }}{{L{\mkern 1mu} R}}\frac{{\partial \overline{\user2{U}}}}{\partial \xi }\frac{{\partial \overline{\user2{V}}^{\text{T}} }}{\partial \theta } + \frac{{2{\mkern 1mu} \tilde{A}_{{{66}}} }}{{L{\mkern 1mu} R}}\frac{{\partial \overline{\user2{U}}}}{\partial \theta }\frac{{\partial \overline{\user2{V}}^{\text{T}} }}{\partial \xi }} \right)} } } {\text{d}}\xi {\text{d}}\theta \\ \end{aligned} $$
$$ {\varvec{K}}^{uw} =LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\left( {\frac{{2{\mkern 1mu} A_{12} }}{{L{\mkern 1mu} R}}\frac{{\partial \overline{\user2{U}}}}{\partial \xi }\overline{\user2{W}}^{\text{T}} } \right)} } {\text{d}}\xi {\text{d}}\theta } + LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( {\frac{{2{\mkern 1mu} \tilde{A}_{12} }}{{L{\mkern 1mu} R}}\frac{{\partial \overline{\user2{U}}}}{\partial \xi }\overline{\user2{W}}^{\text{T}} } \right)} } } {\text{d}}\xi {\text{d}}\theta $$
$$ \begin{aligned} {\varvec{K}}^{{u\phi_{x} }} & =LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\left( {\frac{{2B_{11} }}{{L^{2} }}\frac{{\partial \overline{\user2{U}}}}{\partial \xi }\frac{{\partial \overline{\user2{\Phi }}_{x}^{\text{T}} }}{\partial \xi } + {\mkern 1mu} \frac{{2B_{66} }}{{R^{2} }}\frac{{\partial \overline{\user2{U}}}}{\partial \theta }\frac{{\partial \overline{\user2{\Phi }}_{x}^{\text{T}} }}{\partial \theta }} \right)} } {\text{d}}\xi {\text{d}}\theta } \\ & \quad + \,LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( {\frac{{2\tilde{B}_{11} }}{{L^{2} }}\frac{{\partial \overline{\user2{U}}}}{\partial \xi }\frac{{\partial \overline{\user2{\Phi }}_{x}^{\text{T}} }}{\partial \xi } + {\mkern 1mu} \frac{{2\tilde{B}_{66} }}{{R^{2} }}\frac{{\partial \overline{\user2{U}}}}{\partial \theta }\frac{{\partial \overline{\user2{\Phi }}_{x}^{\text{T}} }}{\partial \theta }} \right)} } } {\text{d}}\xi {\text{d}}\theta \\ \end{aligned} $$
$$ \begin{aligned} {\varvec{K}}^{{u\phi_{\theta } }} & = LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\left( {\frac{{2B_{12} }}{LR}\frac{{\partial \overline{\user2{U}}}}{\partial \xi }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \theta } + {\mkern 1mu} \frac{{2B_{66} }}{LR}\frac{{\partial \overline{\user2{U}}}}{\partial \theta }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \xi }} \right)} } {\text{d}}\xi {\text{d}}\theta } \\ & \quad + \,LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( { + \frac{{2\tilde{B}_{12} }}{LR}\frac{{\partial \overline{\user2{U}}}}{\partial \xi }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \theta } + {\mkern 1mu} \frac{{2\tilde{B}_{66} }}{LR}\frac{{\partial \overline{\user2{U}}}}{\partial \theta }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \xi }} \right)} } } {\text{d}}\xi {\text{d}}\theta \\ \end{aligned} $$
$$ \begin{aligned} {\varvec{K}}^{vv} & =LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\left( {\frac{{A_{{{22}}} }}{{R^{2} }}\frac{{\partial \overline{\user2{V}}}}{\partial \theta }\frac{{\partial \overline{\user2{V}}^{\text{T}} }}{\partial \theta }{\mkern 1mu} + \frac{{k_{c} A_{{{44}}} }}{{R^{2} }}\user2{\overline{V}\overline{V}}^{\text{T}} + \frac{{A_{{{66}}} }}{{L^{2} }}\frac{{\partial \overline{\user2{V}}}}{\partial \xi }\frac{{\partial \overline{\user2{V}}^{\text{T}} }}{\partial \xi }{\mkern 1mu} {\mkern 1mu} } \right)} } {\text{d}}\xi {\text{d}}\theta } \\ & \quad + \,LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( {\frac{{\tilde{A}_{{{22}}} }}{{R^{2} }}\frac{{\partial \overline{\user2{V}}}}{\partial \theta }\frac{{\partial \overline{\user2{V}}^{\text{T}} }}{\partial \theta }{\mkern 1mu} + \frac{{k_{c} \tilde{A}_{{{44}}} }}{{R^{2} }}\user2{\overline{V}\overline{V}}^{\text{T}} + \frac{{\tilde{A}_{{{66}}} }}{{L^{2} }}\frac{{\partial \overline{\user2{V}}}}{\partial \xi }\frac{{\partial \overline{\user2{V}}^{\text{T}} }}{\partial \xi }{\mkern 1mu} } \right)} } } {\text{d}}\xi {\text{d}}\theta \\ \end{aligned} $$
$$ \begin{gathered} {\varvec{K}}^{vw} =LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\left( {\frac{{2A_{{{22}}} }}{{R^{2} }}\frac{{\partial \overline{\user2{V}}}}{\partial \theta }\overline{\user2{W}}^{\text{T}} - \frac{{2k_{c} A_{{{44}}} }}{{R^{2} }}\overline{\user2{V}}\frac{{\partial \overline{\user2{W}}^{\text{T}} }}{\partial \theta }} \right)} } {\text{d}}\xi {\text{d}}\theta } \\ + LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( {\frac{{2\tilde{A}_{{{22}}} }}{{R^{2} }}\frac{{\partial \overline{\user2{V}}}}{\partial \theta }\overline{\user2{W}}^{\text{T}} - \frac{{2k_{c} \tilde{A}_{{{44}}} }}{{R^{2} }}\overline{\user2{V}}\frac{{\partial \overline{\user2{W}}^{\text{T}} }}{\partial \theta }} \right)} } } {\text{d}}\xi {\text{d}}\theta \\ \end{gathered} $$
$$ \begin{aligned} {\varvec{K}}^{{v\phi_{x} }} & = LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\left( {{\mkern 1mu} \frac{{2B_{12} }}{LR}\frac{{\partial \overline{\user2{V}}}}{\partial \theta }\frac{{\partial \overline{\user2{\Phi }}_{x}^{\text{T}} }}{\partial \xi } + {\mkern 1mu} \frac{{2B_{66} }}{LR}\frac{{\partial \overline{\user2{V}}}}{\partial \xi }\frac{{\partial \overline{\user2{\Phi }}_{x}^{\text{T}} }}{\partial \theta }} \right)} } {\text{d}}\xi {\text{d}}\theta } \\ & \quad + \,LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( {{\mkern 1mu} \frac{{2\tilde{B}_{12} }}{LR}\frac{{\partial \overline{\user2{V}}}}{\partial \theta }\frac{{\partial \overline{\user2{\Phi }}_{x}^{\text{T}} }}{\partial \xi } + {\mkern 1mu} \frac{{2\tilde{B}_{66} }}{LR}\frac{{\partial \overline{\user2{V}}}}{\partial \xi }\frac{{\partial \overline{\user2{\Phi }}_{x}^{\text{T}} }}{\partial \theta }} \right)} } } {\text{d}}\xi {\text{d}}\theta \\ \end{aligned} $$
$$ \begin{aligned} {\varvec{K}}^{{v\phi_{\theta } }} & =LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\left( {{\mkern 1mu} \frac{{2B_{22} }}{{R^{2} }}\frac{{\partial \overline{\user2{V}}}}{\partial \theta }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \theta } + {\mkern 1mu} \frac{{2B_{66} }}{{L^{2} }}\frac{{\partial \overline{\user2{V}}}}{\partial \xi }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \xi } - \frac{{2k_{c} A_{{{44}}} }}{R}\user2{\overline{V}\overline{\Phi }}_{\theta }^{\text{T}} } \right)} } {\text{d}}\xi {\text{d}}\theta } \\ & \quad + \,LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( {{\mkern 1mu} \frac{{2\tilde{B}_{22} }}{{R^{2} }}\frac{{\partial \overline{\user2{V}}}}{\partial \theta }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \theta } + {\mkern 1mu} \frac{{2\tilde{B}_{66} }}{{L^{2} }}\frac{{\partial \overline{\user2{V}}}}{\partial \xi }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \xi } - \frac{{2k_{c} \tilde{A}_{{{44}}} }}{R}\user2{\overline{V}\overline{\Phi }}_{\theta }^{\text{T}} } \right)} } } {\text{d}}\xi {\text{d}}\theta \\ \end{aligned} $$
$$ \begin{aligned} {\varvec{K}}^{ww} & = LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\left( {\frac{{k_{c} A_{{{44}}} }}{{R^{2} }}\frac{{\partial \overline{\user2{W}}}}{\partial \theta }\frac{{\partial \overline{\user2{W}}^{\text{T}} }}{\partial \theta } + \frac{{k_{c} A_{55} }}{{L^{2} }}\frac{{\partial \overline{\user2{W}}}}{\partial \xi }\frac{{\partial \overline{\user2{W}}^{\text{T}} }}{\partial \xi } + \frac{{A_{{{22}}} }}{{R^{2} }}\user2{\overline{W}\overline{W}}^{\text{T}} } \right)} } {\text{d}}\xi {\text{d}}\theta {\kern 1pt} } \\ & \quad + \,LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( {\frac{{k_{c} \tilde{A}_{{{44}}} }}{{R^{2} }}\frac{{\partial \overline{\user2{W}}}}{\partial \theta }\frac{{\partial \overline{\user2{W}}^{\text{T}} }}{\partial \theta } + \frac{{k_{c} \tilde{A}_{55} }}{{L^{2} }}\frac{{\partial \overline{\user2{W}}}}{\partial \xi }\frac{{\partial \overline{\user2{W}}^{\text{T}} }}{\partial \xi } + \frac{{\tilde{A}_{{{22}}} }}{{R^{2} }}\user2{\overline{W}\overline{W}}^{\text{T}} } \right)} } } {\text{d}}\xi {\text{d}}\theta \\ \end{aligned} $$
$$ \begin{aligned} {\varvec{K}}^{{w\phi_{x} }} & = LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\left( {\frac{{2k_{c} A_{{{55}}} }}{L}\frac{{\partial \overline{\user2{W}}}}{\partial \xi }\overline{\user2{\Phi }}_{x}^{\text{T}} + \frac{{2B_{12} }}{LR}\overline{\user2{W}}\frac{{\partial \overline{\user2{\Phi }}_{x}^{\text{T}} }}{\partial \xi }} \right)} } {\text{d}}\xi {\text{d}}\theta } \\ & \quad + \,LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( {\frac{{2k_{c} \tilde{A}_{{{55}}} }}{L}\frac{{\partial \overline{\user2{W}}}}{\partial \xi }\overline{\user2{\Phi }}_{x}^{\text{T}} + \frac{{2\tilde{B}_{12} }}{LR}\overline{\user2{W}}\frac{{\partial \overline{\user2{\Phi }}_{x}^{\text{T}} }}{\partial \xi }} \right)} } } {\text{d}}\xi {\text{d}}\theta \\ \end{aligned} $$
$$ \begin{aligned} {\varvec{K}}^{{w\phi_{\theta } }} & = LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\left( {\frac{{2k_{c} A_{{{44}}} }}{R}\frac{{\partial \overline{\user2{W}}}}{\partial \theta }\overline{\user2{\Phi }}_{\theta }^{\text{T}} + \frac{{2B_{22} }}{{R^{2} }}\overline{\user2{W}}\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \theta }} \right)} } {\text{d}}\xi {\text{d}}\theta } \\ & \quad + \,LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( {\frac{{2k_{c} \tilde{A}_{{{44}}} }}{R}\frac{{\partial \overline{\user2{W}}}}{\partial \theta }\overline{\user2{\Phi }}_{\theta }^{\text{T}} + \frac{{2\tilde{B}_{22} }}{{R^{2} }}\overline{\user2{W}}\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \theta }} \right)} } } {\text{d}}\xi {\text{d}}\theta \\ \end{aligned} $$
$$ \begin{aligned} {\varvec{K}}^{{\phi_{x} \phi_{x} }} & = LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\left( {\frac{{D_{11} }}{{L^{2} }}\frac{{\partial \overline{\user2{\Phi }}_{x} }}{\partial \xi }\frac{{\partial \overline{\user2{\Phi }}_{x}^{\text{T}} }}{\partial \xi }{\mkern 1mu} + \frac{{D_{{{66}}} }}{{R^{2} }}\frac{{\partial \overline{\user2{\Phi }}_{x} }}{\partial \theta }\frac{{\partial \overline{\user2{\Phi }}_{x}^{\text{T}} }}{\partial \theta } + k_{c} A_{55} \overline{\user2{\Phi }}_{x} \overline{\user2{\Phi }}_{x}^{\text{T}} } \right)} } {\text{d}}\xi {\text{d}}\theta } \\ & \quad + \,LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( {\frac{{\tilde{D}_{11} }}{{L^{2} }}\frac{{\partial \overline{\user2{\Phi }}_{x} }}{\partial \xi }\frac{{\partial \overline{\user2{\Phi }}_{x}^{\text{T}} }}{\partial \xi }{\mkern 1mu} + \frac{{\tilde{D}_{{{66}}} }}{{R^{2} }}\frac{{\partial \overline{\user2{\Phi }}_{x} }}{\partial \theta }\frac{{\partial \overline{\user2{\Phi }}_{x}^{\text{T}} }}{\partial \theta } + k_{c} \tilde{A}_{55} \overline{\user2{\Phi }}_{x} \overline{\user2{\Phi }}_{x}^{\text{T}} } \right)} } } {\text{d}}\xi {\text{d}}\theta \\ \end{aligned} $$
$$ \begin{aligned} {\varvec{K}}^{{\phi_{x} \phi_{\theta } }} & = LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\left( {\frac{{2D_{12} }}{{L{\mkern 1mu} R}}\frac{{\partial \overline{\user2{\Phi }}_{x} }}{\partial \xi }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \theta } + \frac{{2D_{{{66}}} }}{{L{\mkern 1mu} R}}\frac{{\partial \overline{\user2{\Phi }}_{x} }}{\partial \theta }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \xi }} \right)} } {\text{d}}\xi {\text{d}}\theta } \\ & \quad + \,LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( {\frac{{2\tilde{D}_{12} }}{{L{\mkern 1mu} R}}\frac{{\partial \overline{\user2{\Phi }}_{x} }}{\partial \xi }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \theta } + \frac{{2\tilde{D}_{{{66}}} }}{{L{\mkern 1mu} R}}\frac{{\partial \overline{\user2{\Phi }}_{x} }}{\partial \theta }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \xi }} \right)} } } {\text{d}}\xi {\text{d}}\theta \\ \end{aligned} $$
$$ \begin{aligned} {\varvec{K}}^{{\phi_{\theta } \phi_{\theta } }} & = LR\sum\limits_{s = 1}^{NP} {\int_{{\theta_{s} }}^{{\theta^{\prime}_{s} }} {\int_{{\xi_{s} }}^{{\xi^{\prime}_{s} }} {\left( {\frac{{D_{{{22}}} }}{{R^{2} }}\frac{{\partial \overline{\user2{\Phi }}_{\theta } }}{\partial \theta }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \theta } + k_{c} A_{44} \overline{\user2{\Phi }}_{\theta } \overline{\user2{\Phi }}_{\theta }^{\text{T}} + \frac{{D_{{{66}}} }}{{L^{2} }}\frac{{\partial \overline{\user2{\Phi }}_{\theta } }}{\partial \xi }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \xi }} \right)} } {\text{d}}\xi {\text{d}}\theta } \\ & \quad + \,LR\sum\limits_{r = 1}^{{\overline{NP} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( {\frac{{\tilde{D}_{{{22}}} }}{{R^{2} }}\frac{{\partial \overline{\user2{\Phi }}_{\theta } }}{\partial \theta }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \theta } + k_{c} \tilde{A}_{44} \overline{\user2{\Phi }}_{\theta } \overline{\user2{\Phi }}_{\theta }^{\text{T}} + \frac{{\tilde{D}_{{{66}}} }}{{L^{2} }}\frac{{\partial \overline{\user2{\Phi }}_{\theta } }}{\partial \xi }\frac{{\partial \overline{\user2{\Phi }}_{\theta }^{\text{T}} }}{\partial \xi }} \right)} } } {\text{d}}\xi {\text{d}}\theta \\ \end{aligned} $$

The electromechanical coupling stiffness and the electrical stiffness matrix of the piezoelectric laminated shell are expressed as

$$ {\varvec{K}}_{q\psi } \user2=\left[ {\begin{array}{*{20}l} 0 \hfill & 0 \hfill \\ {\frac{1}{2}{\varvec{K}}^{{v{\kern 1pt} \psi_{a} }} } \hfill & {\frac{1}{2}{\varvec{K}}^{{v{\kern 1pt} \psi_{s} }} } \hfill \\ {\frac{1}{2}{\varvec{K}}^{{w{\kern 1pt} \psi_{a} }} } \hfill & {\frac{1}{2}{\varvec{K}}^{{w{\kern 1pt} \psi_{s} }} } \hfill \\ {\frac{1}{2}{\varvec{K}}^{{\phi_{x} {\kern 1pt} \psi_{a} }} } \hfill & {\frac{1}{2}{\varvec{K}}^{{\phi_{x} {\kern 1pt} \psi_{s} }} } \hfill \\ {\frac{1}{2}{\varvec{K}}^{{\phi_{\theta } {\kern 1pt} \psi_{a} }} } \hfill & {\frac{1}{2}{\varvec{K}}^{{\phi_{\theta } {\kern 1pt} \psi_{s} }} } \hfill \\ \end{array} } \right] $$
(36)
$$ \user2{K}_{{\psi \psi }} \user2{ = }\left[ {\begin{array}{*{20}l} {\user2{K}^{{{\kern 1pt} \psi _{a} \psi _{a} }} } \hfill & 0 \hfill \\ 0 \hfill & {\user2{K}^{{\psi _{s} \psi _{s} }} } \hfill \\ \end{array} } \right] $$
(37)

where

$$ \begin{aligned} \user2{K}^{{v\psi _{a} }} & =LR\sum\limits_{{s = 1}}^{{NP}} {\int_{{\theta _{s} }}^{{\theta ^{\prime}_{s} }} {\int_{{\xi _{s} }}^{{\xi ^{\prime}_{s} }} {\left( {{\mkern 1mu} \frac{{e_{{24{\mkern 1mu} e}} ^{a} h_{a} ^{3} }}{{3R^{2} }}\bar{V}\frac{{\partial \user2{\bar{\Psi }}_{a} ^{\text{T}} }}{{\partial \theta }}} \right)} } {\text{d}}\xi {\text{d}}\theta } \\ \user2{K}^{{v\psi _{s} }} & =LR\sum\limits_{{s = 1}}^{{NP}} {\int_{{\theta _{s} }}^{{\theta ^{\prime}_{s} }} {\int_{{\xi _{s} }}^{{\xi ^{\prime}_{s} }} {\left( {\frac{{e_{{24{\mkern 1mu} e}} ^{s} h_{s} ^{3} }}{{3R^{2} }}\bar{V}\frac{{\partial \user2{\bar{\Psi }}_{s} ^{\text{T}} }}{{\partial \theta }}} \right)} } {\text{d}}\xi {\text{d}}\theta } \\ \user2{K}^{{w\psi _{a} }} & =LR\sum\limits_{{s = 1}}^{{NP}} {\int_{{\theta _{s} }}^{{\theta ^{\prime}_{s} }} {\int_{{\xi _{s} }}^{{\xi ^{\prime}_{s} }} {\left\{ { - \frac{{e_{{15{\mkern 1mu} e}} ^{a} h_{a} ^{3} }}{{3L^{2} }}\frac{{\partial \user2{\bar{W}}}}{{\partial \xi }}\frac{{\partial \user2{\bar{\Psi }}_{a} ^{\text{T}} }}{{\partial \xi }} - \frac{{e_{{24{\mkern 1mu} e}} ^{a} h_{a} ^{3} }}{{3R^{2} }}\frac{{\partial \user2{\bar{W}}}}{{\partial \theta }}\frac{{\partial \user2{\bar{\Psi }}_{a} ^{\text{T}} }}{{\partial \theta }}} \right\}} } {\text{d}}\xi {\text{d}}\theta } \\ \user2{K}^{{w\psi _{s} }} & =LR\sum\limits_{{s = 1}}^{{NP}} {\int_{{\theta _{s} }}^{{\theta ^{\prime}_{s} }} {\int_{{\xi _{s} }}^{{\xi ^{\prime}_{s} }} {\left\{ { - \frac{{e_{{15{\mkern 1mu} e}} ^{s} h_{s} ^{3} }}{{3L^{2} }}\frac{{\partial \user2{\bar{W}}}}{{\partial \xi }}\frac{{\partial \user2{\bar{\Psi }}_{s} ^{\text{T}} }}{{\partial \xi }} - \frac{{e_{{24{\mkern 1mu} e}} ^{s} h_{s} ^{3} }}{{3R^{2} }}\frac{{\partial \user2{\bar{W}}}}{{\partial \theta }}\frac{{\partial \user2{\bar{\Psi }}_{s} ^{\text{T}} }}{{\partial \theta }}} \right\}} } {\text{d}}\xi {\text{d}}\theta } \\ \user2{K}^{{\phi _{x} \psi _{a} }} & =LR\sum\limits_{{s = 1}}^{{NP}} {\int_{{\theta _{s} }}^{{\theta ^{\prime}_{s} }} {\int_{{\xi _{s} }}^{{\xi ^{\prime}_{s} }} {\left\{ { - \frac{{e_{{15{\mkern 1mu} e}} ^{a} h_{a} ^{3} }}{{3L}}\user2{\bar{\Phi }}_{x} \frac{{\partial \user2{\bar{\Psi }}_{a} ^{\text{T}} }}{{\partial \xi }} + \frac{{e_{{31{\mkern 1mu} e}} ^{a} h_{a} ^{3} }}{{3L}}\frac{{\partial \user2{\bar{\Phi }}_{x} }}{{\partial \xi }}\user2{\bar{\Psi }}_{a} ^{\text{T}} } \right\}} } {\text{d}}\xi {\text{d}}\theta } \\ \user2{K}^{{\phi _{x} \psi _{s} }} & =LR\sum\limits_{{s = 1}}^{{NP}} {\int_{{\theta _{s} }}^{{\theta ^{\prime}_{s} }} {\int_{{\xi _{s} }}^{{\xi ^{\prime}_{s} }} {\left\{ {{\mkern 1mu} - \frac{{e_{{15{\mkern 1mu} e}} ^{s} h_{s} ^{3} }}{{3L}}\user2{\bar{\Phi }}_{x} \frac{{\partial \user2{\bar{\Psi }}_{s} ^{\text{T}} }}{{\partial \xi }} + \frac{{e_{{31{\mkern 1mu} e}} ^{s} h_{s} ^{3} }}{{3L}}\frac{{\partial \user2{\bar{\Phi }}_{x} }}{{\partial \xi }}\user2{\bar{\Psi }}_{s} ^{\text{T}} {\mkern 1mu} } \right\}} } {\text{d}}\xi {\text{d}}\theta } \\ \user2{K}^{{\phi _{\theta } \psi _{a} }} & =LR\sum\limits_{{s = 1}}^{{NP}} {\int_{{\theta _{s} }}^{{\theta ^{\prime}_{s} }} {\int_{{\xi _{s} }}^{{\xi ^{\prime}_{s} }} {\left\{ {{\mkern 1mu} \frac{{e_{{32{\mkern 1mu} e}} ^{a} h_{a} ^{3} }}{{3R}}\frac{{\partial \user2{\bar{\Phi }}_{\theta } }}{{\partial \theta }}\user2{\bar{\Psi }}_{a} ^{\text{T}} - \frac{{e_{{24{\mkern 1mu} e}} ^{a} h_{a} ^{3} }}{{3R}}\user2{\bar{\Phi }}_{\theta } \frac{{\partial \user2{\bar{\Psi }}_{a} ^{\text{T}} }}{{\partial \theta }}} \right\}} } {\text{d}}\xi {\text{d}}\theta } \\ \user2{K}^{{\phi _{\theta } \psi _{s} }} & =LR\sum\limits_{{s = 1}}^{{NP}} {\int_{{\theta _{s} }}^{{\theta ^{\prime}_{s} }} {\int_{{\xi _{s} }}^{{\xi ^{\prime}_{s} }} {\left\{ {\frac{{e_{{32{\mkern 1mu} e}} ^{s} h_{s} ^{3} }}{{3R}}\frac{{\partial \user2{\bar{\Phi }}_{\theta } }}{{\partial \theta }}\user2{\bar{\Psi }}_{s} ^{\text{T}} - {\mkern 1mu} \frac{{e_{{24{\mkern 1mu} e}} ^{s} h_{s} ^{3} }}{{3R}}\user2{\bar{\Phi }}_{\theta } \frac{{\partial \user2{\bar{\Psi }}_{s} ^{\text{T}} }}{{\partial \theta }}} \right\}} } {\text{d}}\xi {\text{d}}\theta } \\ \user2{K}^{{\psi _{a} \psi _{a} }} & =LR\sum\limits_{{s = 1}}^{{NP}} {\int_{{\theta _{s} }}^{{\theta ^{\prime}_{s} }} {\int_{{\xi _{s} }}^{{\xi ^{\prime}_{s} }} {\left\{ { - \frac{{\zeta _{{11{\mkern 1mu} e}} ^{a} h_{a} ^{5} }}{{30{\mkern 1mu} L^{2} }}\frac{{\partial \user2{\bar{\Psi }}_{a} }}{{\partial \xi }}\frac{{\partial \user2{\bar{\Psi }}_{a} ^{\text{T}} }}{{\partial \xi }} - {\mkern 1mu} \frac{{\zeta _{{22{\mkern 1mu} e}} ^{a} h_{a} ^{5} }}{{30R^{2} }}\frac{{\partial \user2{\bar{\Psi }}_{a} }}{{\partial \theta }}\frac{{\partial \user2{\bar{\Psi }}_{a} ^{\text{T}} }}{{\partial \theta }} - \frac{{\zeta _{{33{\mkern 1mu} e}} ^{a} h_{a} ^{3} }}{3}\user2{\bar{\Psi }}_{a} \user2{\bar{\Psi }}_{a} ^{\text{T}} } \right\}} } {\text{d}}\xi {\text{d}}\theta } \\ \user2{K}^{{\psi _{s} \psi _{s} }} & =LR\sum\limits_{{s = 1}}^{{NP}} {\int_{{\theta _{s} }}^{{\theta ^{\prime}_{s} }} {\int_{{\xi _{s} }}^{{\xi ^{\prime}_{s} }} {\left\{ { - \frac{{\zeta _{{11{\mkern 1mu} e}} ^{s} h_{s} ^{5} }}{{30{\mkern 1mu} L^{2} }}\frac{{\partial \user2{\bar{\Psi }}_{s} }}{{\partial \xi }}\frac{{\partial \user2{\bar{\Psi }}_{s} ^{\text{T}} }}{{\partial \xi }} - \frac{{\zeta _{{22{\mkern 1mu} e}} ^{s} h_{s} ^{5} }}{{30R^{2} }}\frac{{\partial \user2{\bar{\Psi }}_{s} }}{{\partial \theta }}\frac{{\partial \user2{\bar{\Psi }}_{s} ^{\text{T}} }}{{\partial \theta }} - {\mkern 1mu} \frac{{\zeta _{{33{\mkern 1mu} e}} ^{s} h_{s} ^{3} }}{3}\user2{\bar{\Psi }}_{s} \user2{\bar{\Psi }}_{s} ^{\text{T}} } \right\}} } {\text{d}}\xi {\text{d}}\theta } \\ \end{aligned} $$

Appendix D: Expressions of the spring stiffness matrix K spr

The spring stiffness matrix of the piezoelectric laminated shell is shown as

$$ {\varvec{K}}_{{{\text{spr}}}} = \left[ {\begin{array}{*{20}l} {{\varvec{K}}_{{{\text{spr}}}}^{uu} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & {{\varvec{K}}_{{{\text{spr}}}}^{vv} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {{\varvec{K}}_{{{\text{spr}}}}^{ww} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & {{\varvec{K}}_{{{\text{spr}}}}^{{\phi_{x} \phi_{x} }} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {{\varvec{K}}_{{{\text{spr}}}}^{{\phi_{\theta } \phi_{\theta } }} } \hfill \\ \end{array} } \right] $$
(38)

where

$$ \begin{gathered} K_{{\text{spr}}}^{{uu}} = \sum\limits_{{p = 1}}^{{\text{NA}}} {\left( {k_{{u,p}}^{o} \user2{\bar{U}}\left( {0,\theta _{p} } \right)\user2{\bar{U}}^{\text{T}} \left( {0,\theta _{p} } \right) + k_{{u,p}}^{1} \user2{\bar{U}}\left( {0,\theta _{p} } \right)\user2{\bar{U}}^{\text{T}} \left( {0,\theta _{p} } \right)} \right)} \hfill \\ K_{{\text{spr}}}^{{vv}} = \sum\limits_{{p = 1}}^{{\text{NA}}} {\left( {k_{{v,p}}^{0} \user2{\bar{V}}\left( {0,\theta _{p} } \right)\user2{\bar{V}}^{\text{T}} \left( {0,\theta _{p} } \right) + k_{{v,p}}^{1} \user2{\bar{V}}\left( {1,\theta _{p} } \right)\user2{\bar{V}}^{\text{T}} \left( {1,\theta _{p} } \right)} \right)} \hfill \\ K_{{\text{spr}}}^{{ww}} = \sum\limits_{{p = 1}}^{{\text{NA}}} {\left( {k_{{w,p}}^{0} \user2{\bar{W}}\left( {0,\theta _{p} } \right)\user2{\bar{W}}^{\text{T}} \left( {0,\theta _{p} } \right)} \right.} + \left. {k_{{w,p}}^{\prime1} \user2{\bar{W}}\left( {1,\theta _{p} } \right)\user2{\bar{W}}^{\text{T}} \left( {1,\theta _{p} } \right)} \right)~ \hfill \\ K_{{\text{spr}}}^{{\phi _{x} \phi _{x} }} = \sum\limits_{{p = 1}}^{{\text{NA}}} {\left( {k_{{x,p}}^{0} \user2{\bar{\Phi }}_{x} \left( {0,\theta _{p} } \right)\user2{\bar{\Phi }}_{x} ^{\text{T}} \left( {0,\theta _{p} } \right)} \right.} + \left. {k_{{x,p}}^{1} \user2{\bar{\Phi }}_{x} \left( {1,\theta _{p} } \right)\user2{\bar{\Phi }}_{x} ^{\text{T}} \left( {1,\theta _{p} } \right)} \right)~ \hfill \\ K_{{\text{spr}}}^{{\phi _{\theta } \phi _{\theta } }} = \sum\limits_{{p = 1}}^{{\text{NA}}} {\left( {k_{{\theta ,p}}^{0} \user2{\bar{\Phi }}_{\theta } \left( {0,\theta _{p} } \right)\user2{\bar{\Phi }}_{\theta } ^{\text{T}} \left( {0,\theta _{p} } \right)} \right.} + \left. {k_{{\theta ,p}}^{1} \user2{\bar{\Phi }}_{\theta } \left( {1,\theta _{p} } \right)\user2{\bar{\Phi }}_{\theta } ^{\text{T}} \left( {1,\theta _{p} } \right)} \right)~ \hfill \\ \end{gathered} $$

Appendix E: Expressions of the nonlinear item Q N

$$ \user2{Q}_{N} = \frac{{LR}}{2}\sum\limits_{{s = 1}}^{{NP}} {\int_{{\theta _{s} }}^{{\theta ^{\prime}_{s} }} {\int_{{\xi _{s} }}^{{\xi ^{\prime}_{s} }} {\left( \begin{gathered} \frac{{A_{{12}} }}{{LR^{2} }}{\user2{q}}_{u}^{T} \frac{{\partial \overline{\user2{U}} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \theta }}{\user2{q}}_{w} {\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }} + \frac{{A_{{11}} }}{{L^{3} }}{\user2{q}}_{u}^{T} \frac{{\partial \overline{\user2{U}} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \xi }}{\user2{q}}_{w} {\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }} \hfill \\ + \frac{{2A_{{66}} }}{{LR^{2} }}{\user2{q}}_{u}^{T} \frac{{\partial \overline{\user2{U}} }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \xi }}{\user2{q}}_{w} {\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }} + \frac{{2A_{{66}} }}{{L^{2} R}}{\user2{q}}_{v}^{T} \frac{{\partial \overline{\user2{V}} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \xi }}\user2{q}_{w} {\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }} \hfill \\ + \frac{{A_{{12}} }}{{L^{2} R}}{\user2{q}}_{v}^{T} \frac{{\partial \overline{\user2{V}} }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \xi }}{\user2{q}}_{w} q_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }} + \frac{{A_{{22}} }}{{R^{3} }}{\user2{q}}_{v}^{T} \frac{{\partial \overline{\user2{V}} }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \theta }}{\user2{q}}_{w} {\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }} \hfill \\ + \frac{{A_{{12}} }}{{L^{2} R}}{\user2{q}}_{w}^{T} \overline{\user2{W}} \frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \xi }}{\user2{q}}_{w} {\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }} + \frac{{A_{{22}} }}{{R^{3} }}{\user2{q}}_{w}^{T} \overline{\user2{W}} \frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \theta }}{\user2{q}}_{w} {\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }} \hfill \\ + \frac{{B_{{12}} }}{{R^{2} L}}{\user2{q}}_{{\phi _{x} }}^{T} \frac{{\partial \user2{\bar{\Phi }}_{x} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \theta }}{\user2{q}}_{w} \frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \theta }}{\user2{q}}_{w} + \frac{{B_{{11}} }}{{L^{3} }}{\user2{q}}_{{\phi _{x} }}^{T} \frac{{\partial \user2{\bar{\Phi }}_{x} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \xi }}{\user2{q}}_{w} \frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \xi }}{\user2{q}}_{w} \hfill \\ + \frac{{2B_{{66}} }}{{R^{2} L}}{\user2{q}}_{{\phi _{x} }}^{T} \frac{{\partial \user2{\bar{\Phi }}_{x} }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \xi }}{\user2{q}}_{w} \frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \theta }}{\user2{q}}_{w} + \frac{{2{\kern 1pt} B_{{66}} }}{{L^{2} R}}{\user2{q}}_{{\phi _{\theta } }}^{T} \frac{{\partial \user2{\bar{\Phi }}_{\theta } }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \xi }}{\user2{q}}_{w} \frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \theta }}q_{w} \hfill \\ + \frac{{B_{{12}} }}{{L^{2} R}}{\user2{q}}_{{\phi _{\theta } }}^{T} \frac{{\partial \user2{\bar{\Phi }}_{\theta } }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \xi }}{\user2{q}}_{w} \frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \xi }}{\user2{q}}_{w} + \frac{{B_{{22}} }}{{R^{3} }}{\user2{q}}_{{\phi _{\theta } }}^{T} \frac{{\partial \user2{\bar{\Phi }}_{\theta } }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \theta }}{\user2{q}}_{w} \frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \theta }}q_{w} \hfill \\ + \frac{{A_{{11}} }}{{4L^{4} }}{\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \xi }}{\user2{q}}_{w} {\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }}\frac{{\partial \overline{{\user2{W}^{T} }} }}{{\partial \xi }}{\user2{q}}_{w} \hfill \\ + {\kern 1pt} \frac{{A_{{22}} }}{{4R^{4} }}{\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \theta }}{\user2{q}}_{w} {\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \theta }}{\user2{q}}_{w} \hfill \\ + \frac{{A_{{12}} }}{{4R^{2} L^{2} }}{\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \xi }}{\user2{q}}_{w} {\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }}\frac{{\partial \overline{{\user2{W}^{T} }} }}{{\partial \theta }}{\user2{q}}_{w} \hfill \\ + \frac{{A_{{12}} }}{{4R^{2} L^{2} }}{\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \theta }}{\user2{q}}_{w} {\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \xi }}{\user2{q}}_{w} \hfill \\ + \frac{{A_{{66}} }}{{R^{2} L^{2} }}{\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{T} }}{{\partial \theta }}{\user2{q}}_{w} {\user2{q}}_{w}^{T} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} }}{{\partial \theta }}q_{w} \hfill \\ \end{gathered} \right)} } {\text{d}}\xi {\text{d}}\theta } $$
$$ + \frac{{LR}}{2}\sum\limits_{{r = 1}}^{{\overline{{NP}} }} {\int_{{\tilde{\theta }_{r} }}^{{\tilde{\theta }^{\prime}_{r} }} {\int_{{\tilde{\xi }_{r} }}^{{\tilde{\xi }^{\prime}_{r} }} {\left( \begin{gathered} \frac{{\tilde{A}_{{12}} }}{{LR^{2} }}{\user2{q}}_{u}^{{\text{T}}} \frac{{\partial \overline{\user2{U}} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}}^{{\text{T}}} }}{{\partial \theta }}{\user2{q}}_{w} {\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }} + \frac{{\tilde{A}_{{11}} }}{{L^{3} }}{\user2{q}}_{u}^{{\text{T}}} \frac{{\partial \overline{\user2{U}} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \xi }}{\user2{q}}_{w} {\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }} \hfill \\ + \frac{{2\tilde{A}_{{66}} }}{{LR^{2} }}{\user2{q}}_{u}^{{\text{T}}} \frac{{\partial \overline{\user2{U}} }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \xi }}{\user2{q}}_{w} {\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }} + \frac{{2\tilde{A}_{{66}} }}{{L^{2} R}}{\user2{q}}_{v}^{{\text{T}}} \frac{{\partial \overline{V} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \xi }}{\user2{q}}_{w} {\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }} \hfill \\ + \frac{{\tilde{A}_{{12}} }}{{L^{2} R}}{\user2{q}}_{v}^{{\text{T}}} \frac{{\partial \overline{\user2{V}} }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \xi }}{\user2{q}}_{w} {\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }} + \frac{{\tilde{A}_{{22}} }}{{R^{3} }}{\user2{q}}_{v}^{{\text{T}}} \frac{{\partial \overline{\user2{V}} }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \theta }}{\user2{q}}_{w} {\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }} \hfill \\ + \frac{{\tilde{A}_{{12}} }}{{L^{2} R}}{\user2{q}}_{w}^{{\text{T}}} \overline{\user2{W}} \frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \xi }}{\user2{q}}_{w} {\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }} + \frac{{\tilde{A}_{{22}} }}{{R^{3} }}{\user2{q}}_{w}^{{\text{T}}} \overline{\user2{W}} \frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \theta }}{\user2{q}}_{w} {\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }} \hfill \\ + \frac{{\tilde{B}_{{12}} }}{{R^{2} L}}{\user2{q}}_{{\phi _{x} }}^{{\text{T}}} \frac{{\partial \user2{\bar{\Phi }}_{x} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \theta }}{\user2{q}}_{w} \frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \theta }}{\user2{q}}_{w} + \frac{{\tilde{B}_{{11}} }}{{L^{3} }}{\user2{q}}_{{\phi _{x} }}^{{\text{T}}} \frac{{\partial \user2{\bar{\Phi }}_{x} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \xi }}{\user2{q}}_{w} \frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \xi }}{\user2{q}}_{w} \hfill \\ + \frac{{2\tilde{B}_{{66}} }}{{R^{2} L}}{\user2{q}}_{{\phi _{x} }}^{{\text{T}}} \frac{{\partial \user2{\bar{\Phi }}_{x} }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \xi }}{\user2{q}}_{w} \frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \theta }}{\user2{q}}_{w} + \frac{{2{\kern 1pt} \tilde{B}_{{66}} }}{{L^{2} R}}{\user2{q}}_{{\phi _{\theta } }}^{{\text{T}}} \frac{{\partial \user2{\bar{\Phi }}_{\theta } }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \xi }}{\user2{q}}_{w} \frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \theta }}{\user2{q}}_{w} \hfill \\ + \frac{{\tilde{B}_{{12}} }}{{L^{2} R}}{\user2{q}}_{{\phi _{\theta } }}^{{\text{T}}} \frac{{\partial \user2{\bar{\Phi }}_{\theta } }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \xi }}{\user2{q}}_{w} \frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \xi }}{\user2{q}}_{w} + \frac{{\tilde{B}_{{22}} }}{{R^{3} }}{\user2{q}}_{{\phi _{\theta } }}^{{\text{T}}} \frac{{\partial \user2{\bar{\Phi }}_{\theta } }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \theta }}{\user2{q}}_{w} \frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \theta }}{\user2{q}}_{w} \hfill \\ + \frac{{\tilde{A}_{{11}} }}{{4L^{4} }}{\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \xi }}{\user2{q}}_{w} {\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }}\frac{{\partial \overline{{\user2{W}^{{\text{T}}} }} }}{{\partial \xi }}{\user2{q}}_{w} \hfill \\ + {\kern 1pt} \frac{{\tilde{A}_{{22}} }}{{4R^{4} }}{\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \theta }}{\user2{q}}_{w} {\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \theta }}{\user2{q}}_{w} \hfill \\ + \frac{{\tilde{A}_{{12}} }}{{4R^{2} L^{2} }}{\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \xi }}{\user2{q}}_{w} {\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }}\frac{{\partial \overline{{\user2{W}^{{\text{T}}} }} }}{{\partial \theta }}{\user2{q}}_{w} \hfill \\ + \frac{{\tilde{A}_{{12}} }}{{4R^{2} L^{2} }}{\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \theta }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \theta }}{\user2{q}}_{w} {\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \xi }}q_{w} \hfill \\ + \frac{{\tilde{A}_{{66}} }}{{R^{2} L^{2} }}{\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} ^{{\text{T}}} }}{{\partial \theta }}{\user2{q}}_{w} {\user2{q}}_{w}^{{\text{T}}} \frac{{\partial \overline{\user2{W}} }}{{\partial \xi }}\frac{{\partial \overline{\user2{W}} }}{{\partial \theta }}q_{w} \hfill \\ \end{gathered} \right)} } } d\xi d\theta $$

Appendix F: Incremental Harmonic Balance Method

By presenting the new non-dimensional time variable τ, we write the nonlinear vibration differential equation to a modified form

$$ \begin{aligned} & \omega^{2} {\varvec{M}}_{qq} \user2{X^{\prime\prime}} + \omega \left( {{\varvec{C}}_{A} + {\varvec{C}}_{R} } \right)\user2{X^{\prime}} + \left( {{\varvec{K}}_{qq} + {\varvec{K}}_{spr} + {\varvec{K}}_{{q{\kern 1pt} \psi }}^{S} {\varvec{K}}_{\psi \psi }^{S - 1} {\varvec{K}}_{{q{\kern 1pt} \psi }}^{ST} + {\varvec{K}}_{{\text{N}}}^{\left( 2 \right)} + {\varvec{K}}_{{\text{N}}}^{\left( 3 \right)} } \right){\varvec{X}} = {\varvec{F}}{\text{cos}}\tau \\ & \tau = \omega_{{{\text{EX}}}} t,\,{\varvec{X}}=\left[ {X_{1} ,X_{2} ,X_{3} ,\ldots,X_{n} } \right]^{\text{T}} ,\,{\varvec{F}} = \left[ {\begin{array}{*{20}c} {{\varvec{f}}_{u} } & {{\varvec{f}}_{v} } & {{\varvec{f}}_{w} } & {{\varvec{f}}_{{\phi_{x} }} } & {{\varvec{f}}_{{\phi_{\theta } }} } \\ \end{array} } \right]^{\text{T}} \\ \end{aligned} $$
(39)

Firstly, the differential equations are linearized by using the Newton–Raphson procedure. The corresponding adding increments are used to represent the neighboring state as

$$ \begin{aligned} X_{j} & = X_{j0} + \Delta X,\quad j = 1,2, \ldots ,n \\ \omega & = \omega_{0} + \Delta \omega \\ \end{aligned} $$
(40)

Taking Eqs. (40) to (39), the higher-order terms are neglected, and Eq. (39) is written as

$$ \begin{aligned} & \omega_{0}^{2} {\varvec{M}}_{qq} \user2{X^{\prime\prime}} + \omega_{0} \left( {{\varvec{C}}_{A} + {\varvec{C}}_{R} } \right)\user2{X^{\prime}} + \left( {{\varvec{K}}_{qq} + {\varvec{K}}_{spr} + {\varvec{K}}_{{q{\kern 1pt} \psi }}^{S} {\varvec{K}}_{\psi \psi }^{S- 1} {\varvec{K}}_{{q{\kern 1pt} \psi }}^{ST} + 2{\varvec{K}}_{{\text{N}}}^{\left( 2 \right)} + 3{\varvec{K}}_{{\text{N}}}^{\left( 3 \right)} } \right){\varvec{X}} \\ & = {\mathbf{Re}} - \left( {2\omega_{0} {\varvec{M}}_{qq} \user2{X^{\prime\prime}}_{0} + \left( {{\varvec{C}}_{A} + {\varvec{C}}_{R} } \right)\user2{X^{\prime}}_{0} } \right)\Delta \omega \\ \end{aligned} $$
(41)
$$ {\mathbf{Re}} = {\varvec{F}}{\text{cos}}\tau - \omega_{0}^{2} {\varvec{M}}_{qq} \user2{X^{\prime\prime}}_{0} - \omega_{0}^{{}} \left( {{\varvec{C}}_{A} + {\varvec{C}}_{R} } \right)\user2{X^{\prime}}_{0} - \left( {{\varvec{K}}_{qq} + {\varvec{K}}_{{q{\kern 1pt} \psi }}^{S} {\varvec{K}}_{\psi \psi }^{S- 1} {\varvec{K}}_{{q{\kern 1pt} \psi }}^{ST} \user2{ + }2{\varvec{K}}_{{\text{N}}}^{\left( 2 \right)} + 3{\varvec{K}}_{{\text{N}}}^{\left( 3 \right)} } \right){\varvec{X}}_{0} $$
(42)

where \({\varvec{X}}_{{\varvec{0}}} =\left[ {X_{10} ,X_{20} ,X_{30} ,\ldots,X_{n0} } \right]^{\text{T}} ,\Delta {\varvec{X}}=\left[ {\Delta X_{1} ,\Delta X_{2} ,\Delta X_{3} ,\ldots,\Delta X_{n} } \right]^{\text{T}}\). When the solution is the exact value, the residue “Re” becomes zero.

Next, by using the Galerkin’s technique, the steady-state response with a truncated Fourier series is written as

$$ \begin{aligned} X_{{j0}} & = A_{0} + \sum\limits_{{k = 1}}^{r} {\left( {a_{{jk}} \cos k\tau + b_{{jk}} \sin k\tau } \right)} = \user2{T}_{c} \user2{A}_{j} \\ \Delta X_{j} & = \Delta A + \sum\limits_{{k = 1}}^{r} {\left( {a_{{jk}} \cos k\tau + b_{{jk}} \sin k\tau } \right)} = \user2{T}_{c} \Delta \user2{A}_{j} \\ \end{aligned} $$
(43)

where

$$ \begin{aligned} T_{c} & = \left[ {1,\;\cos \tau ,\;\sin \tau ,\;\cos 2\tau ,\;\sin 2\tau , \ldots ,\cos r\tau ,\;\sin r\tau } \right] \\ A_{j} & = \left\{ {a_{{j1}} ,a_{{j2}} ,...,a_{{jn}} ,b_{{j1}} ,b_{{j2}} ,...,b_{{jn}} } \right\}^{{\text{T}}} \\ \Delta A_{j} & = \left\{ {\Delta a_{{j1}} ,\Delta a_{{j2}} ,...,\Delta a_{{jn}} ,\Delta b_{{j1}} ,\Delta b_{{j2}} ,...,\Delta b_{{jn}} } \right\}^{{\text{T}}} \\ \end{aligned} $$
(44)

where \(a_{jk}\),\(b_{jk}\) are the Fourier coefficients, and n are the numbers of cosine and sine terms. Using these vectors of Fourier coefficients A and its increments \(\Delta {\varvec{A}}\), the vectors of the unknown parameters are written as

$$ {X}_{0} {\text{ = }}{SA}\quad \Delta {X}{\text{ = }}{S}\Delta {A} $$
(45)

in which

$$ {S} = \left[ {\begin{array}{*{20}l} {{T}_{c} } \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {{T}_{c} } \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & \ddots \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {{T}_{c} } \hfill \\ \end{array} } \right],{A} = \left\{ {{A}_{1} ,{A}_{2} ,\ldots,{A}_{n} } \right\}^{\text{T}} ,\quad \Delta {A} = \left\{ {\Delta {A}_{1} ,\Delta {A}_{2} ,\ldots,\Delta {A}_{n} } \right\}^{\text{T}} $$
(46)

Taking Eqs. (45) to (41), Galerkin’s technique is used

$$ \begin{aligned} & \int_{0}^{{2{\varvec{\pi}}}} {\delta \left( {\Delta {X}} \right)}^{{\varvec{T}}} \left[ {\omega_{0}^{2} {\varvec{M}}_{qq} \user2{X^{\prime\prime}} + \omega_{0} \left( {{\varvec{C}}_{A} + {\varvec{C}}_{R} } \right)\user2{X^{\prime}} + \left( {{K}_{qq} + {K}_{spr} + {\varvec{K}}_{{q{\kern 1pt} \psi }}^{S} {\varvec{K}}_{\psi \psi }^{S- 1} {\varvec{K}}_{{q{\kern 1pt} \psi }}^{ST} + 2{K}_{{\text{N}}}^{\left( 2 \right)} + 3{K}_{{\text{N}}}^{\left( 3 \right)} } \right)\Delta {X}} \right]{\text{d}}\tau \\ & = \int_{0}^{{2{\varvec{\pi}}}} {\delta \left( {\Delta {X}} \right)}^{{\varvec{T}}} \left[ {{\mathbf{Re}} - \left( {2\omega_{0} {\varvec{M}}_{qq} \user2{X^{\prime\prime}}_{0} } \right)\Delta \omega - \left( {{\varvec{C}}_{A} + {\varvec{C}}_{R} } \right)\user2{X^{\prime}}_{0} } \right]{\text{d}}\tau \\ \end{aligned} $$
(47)

The linear equation including \(\Delta {\varvec{A}}\) and \(\Delta \omega\) is written as

$$ {\varvec{K}}_{{{\text{mc}}}} \Delta {\varvec{A}} + {\varvec{R}}_{{{\text{mc}}}} {\varvec{A}}\Delta \omega = {\varvec{R}}_{{{\text{m}}1}} {\varvec{A}} + {\varvec{R}}_{{{\text{m}}2}} $$
(48)

where

$$ \begin{aligned} {\varvec{K}}_{{{\text{mc}}}} & = \int_{0}^{{2{\uppi }}} {{\varvec{S}}^{{\text{T}}} \left[ {\omega^{2} {\varvec{M}}_{qq} \user2{\ddot{S}} + \omega \left( {{\varvec{C}}_{A} + {\varvec{C}}_{R} } \right)\dot{\user2{S}} + \left( {{\varvec{K}}_{qq} + {\varvec{K}}_{spr} + {\varvec{K}}_{{q{\kern 1pt} \psi }}^{S} {\varvec{K}}_{\psi \psi }^{S - 1} {\varvec{K}}_{{q{\kern 1pt} \psi }}^{ST} + 2{\varvec{K}}_{{\text{N}}}^{\left( 2 \right)} + 3{\varvec{K}}_{{\text{N}}}^{\left( 3 \right)} } \right){\varvec{S}}} \right]{\text{d}}\tau } \\ {\varvec{R}}_{{{\text{mc}}}} & = \int_{0}^{{2{\uppi }}} {{\varvec{S}}^{{\text{T}}} \left( {2\omega {\varvec{M}}_{qq} \user2{\ddot{S}} + \left( {{\varvec{C}}_{A} + {\varvec{C}}_{R} } \right)\dot{\user2{S}}} \right){\text{d}}\tau } \\ {\varvec{R}}_{{{\text{m}}1}} & = - \int_{0}^{{2{\uppi }}} {{\varvec{S}}^{{\text{T}}} \left[ {\omega^{2} {\varvec{M}}_{qq} \user2{\ddot{S}} + \omega \left( {{\varvec{C}}_{A} + {\varvec{C}}_{R} } \right)\dot{\user2{S}} + \left( {{\varvec{K}}_{qq} + {\varvec{K}}_{spr} + {\varvec{K}}_{{q{\kern 1pt} \psi }}^{S} {\varvec{K}}_{\psi \psi }^{S - 1} {\varvec{K}}_{{q{\kern 1pt} \psi }}^{ST} + {\varvec{K}}_{{\text{N}}}^{\left( 2 \right)} + {\varvec{K}}_{{\text{N}}}^{\left( 3 \right)} } \right){\varvec{S}}} \right]{\text{d}}\tau } \\ {\varvec{R}}_{{{\text{m2}}}} & = \int_{0}^{{2{\uppi }}} {{\varvec{S}}^{{\text{T}}} {\varvec{F}}\cos \tau {\text{d}}\tau } \\ \end{aligned} $$
(49)

Finally, we use the arc-length method to solve Eq. (48) for obtaining the frequency–amplitude response.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, P. & Miao, X. Research on nonlinear vibration control of laminated cylindrical shells with discontinuous piezoelectric layer. Nonlinear Dyn 104, 3247–3267 (2021). https://doi.org/10.1007/s11071-021-06497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06497-x

Keywords

Navigation