Skip to main content
Log in

Rate-dependent bifurcation dodging in a thermoacoustic system driven by colored noise

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Tipping in multistable systems occurs usually by varying the input slightly, resulting in the output switching to an often unsatisfactory state. This phenomenon is manifested in thermoacoustic systems. The thermoacoustic instability may lead to the disintegration of rocket engines, gas turbines and aeroengines, so it is necessary to design control measures for its suppression. It was speculated that such unwanted instability states may be dodged by changing the bifurcation parameters quickly enough, and compared with the white noise discussed in [1], colored noise with nonzero correlation time is more practical and important to the system. Thus, in this work, based on a fundamental mathematical model of thermoacoustic systems driven by colored noise, the corresponding Fokker–Planck–Kolmogorov equation of the amplitude is derived by using a stochastic averaging method. A transient dynamical behavior is identified through a probability density analysis. We find that both a relatively higher rate of change of parameters and change in the correlation time of the noise are beneficial to dodge thermoacoustic instability, while a relatively large noise intensity is a disadvantageous factor. More interestingly and importantly, power-law relationships between the maximum amplitude and the noise parameters are uncovered, and the probability of successfully dodging a thermoacoustic instability is calculated. These results serve as a guidance for the design of engines and to propose an effective control strategy, which is of great significance to aerospace-related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bonciolini, G., Noiray, N.: Bifurcation dodge: avoidance of a thermoacoustic instability under transient operation. Nonlin. Dyn. 96(1), 703–716 (2019)

    Article  MATH  Google Scholar 

  2. Ashwin, P., Perryman, C., Wieczorek, S.: Parameter shifts for nonautonomous systems in low dimension: bifurcation-and rate-induced tipping. Nonlinearity 30(6), 2185 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lenton, T.M.: Tipping positive change. Philosoph. Transac. Royal Soc. B 375(1794), 1–8 (2020)

    Google Scholar 

  4. Grodzins, M.: Metropolitan segregation. Scientif. Am. 197(4), 33–41 (1957)

    Article  Google Scholar 

  5. Gladwell, M.: The Tipping Point: How Little Things Can Make a Big Difference. Little Brown, Boston (2000)

    Google Scholar 

  6. Ashwin, P., Der Heydt, A.V.: Extreme sensitivity and climate tipping points. J. Statist. Phys. 1, 22 (2019)

    MATH  Google Scholar 

  7. Holland, M.M., Bitz, C.M., Tremblay, B.: Future abrupt reductions in the summer arctic sea ice. Geophys. Res. Lett. 33(23), L23503 (2006)

    Article  Google Scholar 

  8. Clark, G.F., Stark, J.S., Johnston, E.L., Runcie, J.W., Goldsworthy, P.M., Raymond, B., Riddle, M.J.: Light-driven tipping points in polar ecosystems. Global Change Biol. 19(12), 3749–3761 (2013)

    Article  Google Scholar 

  9. Yan, W., Woodard, R., Sornette, D.: Diagnosis and prediction of tipping points in financial markets: crashes and rebounds. Phys. Proc. 3(5), 1641–1657 (2010)

    Article  Google Scholar 

  10. Jiang, J., Huang, Z.-G., Seager, T.P., Lin, W., Grebogi, C., Hastings, A., Lai, Y.-C.: Predicting tipping points in mutualistic networks through dimension reduction. Proc. Nat. Acad. Sci. 115(4), E639–E647 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, H., Xu, Y., Li, Y., Metzler, R.: Transition path dynamics across rough inverted parabolic potential barrier. European Phys. J. Plus 135, 731 (2020)

    Article  Google Scholar 

  12. Zhang, X., Xu, Y., Schmalfuß, B., Pei, B.: Random attractors for stochastic differential equations driven by two-sided Lévy processes. Stochastic Analys. Appl. 37(6), 1028–1041 (2019)

    Article  MATH  Google Scholar 

  13. Liu, Q., Xu, Y., Kurths, J.: Bistability and stochastic jumps in an airfoil system with viscoelastic material property and random fluctuations. Commun. Nonlin. Sci. Num. Simulat. 105184, 81 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Meng, Y., Lai, Y.-C., Grebogi, C.: Tipping point and noise-induced transients in ecological networks. J. Royal Soc. Interf. 17(171), 20200645 (2020)

    Article  Google Scholar 

  15. Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V., Held, H., Van Nes, E.H., Rietkerk, M., Sugihara, G.: Early-warning signals for critical transitions. Nature 461(7260), 53–59 (2009)

    Article  Google Scholar 

  16. Ma, J., Xu, Y., Kurths, J., Wang, H., Xu, W.: Detecting early-warning signals in periodically forced systems with noise. Chaos 28(11), 113601 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ma, J., Xu, Y., Li, Y., Tian, R., Kurths, J.: Predicting noise-induced critical transitions in bistable systems. Chaos 29(8), 081102 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, J., Xu, Y., Xu, W., Li, Y., Kurths, J.: Slowing down critical transitions via gaussian white noise and periodic force. Sci. China-Technol. Sci. 62(12), 2144–2152 (2019)

    Article  Google Scholar 

  19. Ma, J., Xu, Y., Li, Y., Tian, R., Ma, S., Kurths, J.: Quantifying the parameter dependent basin of the unsafe regime of asymmetric Lévy-noise-induced critical transitions. Appl. Mathem. Mech. 42(1), 65–84 (2021)

    Article  Google Scholar 

  20. Farazmand, M.: Mitigation of tipping point transitions by time-delay feedback control. Chaos 30(1), 013149 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meng, Y., Jiang, J., Grebogi, C., Lai, Y.: Noise-enabled species recovery in the aftermath of a tipping point. Phys. Rev. E 101(1), 012206 (2020)

    Article  MathSciNet  Google Scholar 

  22. Mcmanus, K.R., Poinsot, T., Candel, S.: A review of active control of combustion instabilities. Prog. Energy Combust. Sci. 19(1), 1–29 (1993)

    Article  Google Scholar 

  23. Sujith, R., Unni, V.R.: Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors. Phys. Fluids 32(6), 061401 (2020)

    Article  Google Scholar 

  24. Lieuwen, T.C.: Unsteady Combustor Physics. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  25. Tandon, S., Pawar, S.A., Banerjee, S., Varghese, A.J., Durairaj, P., Sujith, R.: Bursting during intermittency route to thermoacoustic instability: effects of slow-fast dynamics? Chaos 30(10), 103112 (2020)

    Article  MathSciNet  Google Scholar 

  26. Oefelein, J.C., Yang, V.: Comprehensive review of liquid-propellant combustion instabilities in F-1 engines. J.Propuls. Power 9(5), 657–677 (1993)

    Article  Google Scholar 

  27. Kiers, C.: Rate-induced tipping in discrete-time dynamical systems. SIAM J. Appl. Dyn. Syst. 19(2), 1200–1224 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ashwin, P., Wieczorek, S., Vitolo, R., Cox, P.: Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Philosoph. Transact. Royal Soc. A 370(1962), 1166–1184 (2012)

    Article  Google Scholar 

  29. Manikandan, S., Sujith, R.I.: Rate dependent transition to thermoacoustic instability via intermittency in a turbulent afterburner. Experiment. Therm. Fluid Sci. 114, 110046 (2020)

    Article  Google Scholar 

  30. Vanselow, A., Wieczorek, S., Feudel, U.: When very slow is too fast - collapse of a predator-prey system. J. Theor. Biol. 479, 64–72 (2019)

    Article  MathSciNet  Google Scholar 

  31. Suchithra, K., Gopalakrishnan, E., Surovyatkina, E., Kurths, J.: Rate-induced transitions and advanced takeoff in power systems. Chaos 30, 061103 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tony, J., Subarna, S., Syamkumar, K., Sudha, G., Akshay, S., Gopalakrishnan, E., Surovyatkina, E., Sujith, R.: Experimental investigation on preconditioned rate induced tipping in a thermoacoustic system. Scientif. rep. 7(1), 1–7 (2017)

    Google Scholar 

  33. Unni, V.R., Gopalakrishnan, E.A., Syamkumar, K.S., Sujith, R.I., Surovyatkina, E., Kurths, J.: Interplay between random fluctuations and rate dependent phenomena at slow passage to limit-cycle oscillations in a bistable thermoacoustic system. Chaos 29(3), 031102 (2019)

    Article  Google Scholar 

  34. Noiray, N., Schuermans, B.: Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors. Int. J. Non-linear Mech. 50, 152–163 (2013)

    Article  Google Scholar 

  35. Culick, F., Paparizos, L., Sterling, J., Burnley, V.: Combustion noise and combustion instabilities in propulsion systems, in: Proceedings of AGARD Conference on Combat Aircraft Noise, 1992

  36. Nair, V., Sujith, R.: Multifractality in combustion noise: predicting an impending combustion instability. J. Fluid Mech. 747, 635–655 (2014)

    Article  Google Scholar 

  37. Nair, V., Thampi, G., Karuppusamy, S., Gopalan, S., Sujith, R.: Loss of chaos in combustion noise as a precursor of impending combustion instability. Int. J. Spray and Combustion Dynamics 5(4), 273–290 (2013)

    Article  Google Scholar 

  38. Leyer, J., Soloukhin, R., Bowen, J.: An experimental analysis of noise sources in a dump combustor. Dyn React. Syst. 105, 333–345 (1986)

    Google Scholar 

  39. Li, X., Zhao, D., Li, X.: Effects of background noises on nonlinear dynamics of a modelled thermoacoustic combustor. J. Acoust. Soc. Am. 143(1), 60–70 (2018)

    Article  Google Scholar 

  40. Mei, R., Xu, Y., Li, Y., Kurths, J.: The steady current analysis in a periodic channel driven by correlated noises. Chaos, Solitons & Fractals 135, 109766 (2020)

    Article  MathSciNet  Google Scholar 

  41. Hänggi, P., Jung, P.: Colored noise in dynamical systems. Adv. Chem. Phys. 89, 239–326 (1995)

    Google Scholar 

  42. Rayleigh, J.: The explanation of certain acoustical phenomena. Nature 18, 319–321 (1878)

    Article  Google Scholar 

  43. Bonciolini, G., Ebi, D., Boujo, E., Noiray, N.: Experiments and modelling of rate-dependent transition delay in a stochastic subcritical bifurcation. Royal Soc. Open Sci. 5(3), 172078 (2018)

    Article  Google Scholar 

  44. Zhang, X., Xu, Y., Liu, Q., Kurths, J.: Rate-dependent tipping-delay phenomenon in a thermoacoustic system with colored noise. Sci. China-Technol. Sci. 63(11), 2315–2327 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by the National Natural Science Foundation of China under Grant Nos. 11772255 and 12072264, the National Key Research and Development Program of China (No. 2018AAA0102201), the Fundamental Research Funds for the Central Universities, the Research Funds for Interdisciplinary Subject of Northwestern Polytechnical University, the Shaanxi Project for Distinguished Young Scholars, the Shaanxi Provincial Key R&D Program 2020KW-013 and 2019TD-010 and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University under Grant No. CX201962.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xu, Y., Liu, Q. et al. Rate-dependent bifurcation dodging in a thermoacoustic system driven by colored noise. Nonlinear Dyn 104, 2733–2743 (2021). https://doi.org/10.1007/s11071-021-06368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06368-5

Keywords

Navigation