Skip to main content
Log in

Dynamic effect of constant inertial acceleration on vibration isolation system with high-order stiffness and Bouc–Wen hysteresis

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear vibration isolation provides with an effective way for vibration reduction with broad band and high efficiency. This investigation focuses on the dynamic effects of a constant inertial acceleration on a nonlinear vibration isolation system with high-order stiffness and Bouc–Wen hysteresis. A wire rope-based isolator subject to the inertial acceleration is analyzed to illustrate the uncertainty of the static equilibrium state and the diverse dynamic effects of the acceleration. The frequency responses are obtained through a semianalytical method based on the harmonic balance method. A recursive method is proposed to deal with the polynomial function derived from the nonlinear stiffness. An alternating frequency/time domain technique is adopted to treat the implicit function of the Bouc–Wen hysteresis. The calculation results are verified by a numerical simulation with the Runge–Kutta method. The analysis and the simulations reveal that the inertial acceleration leads to different static equilibrium states according to the paths to the equilibriums. The inertial acceleration, respectively, affects the static equilibrium displacement and the residual hysteretic force, and they change the dynamic responses differently. The acceleration effect on the static equilibrium displacement leads to additional coupling stiffness making the system harder/softener with positive/negative high-order stiffness. Furthermore, the acceleration has a significant effect on the dynamic equilibrium location, and the equilibrium reaches the minimum around the resonance and increases gradually at higher frequencies. The acceleration effect on the residual hysteretic force changes the amplitude–frequency responses indirectly through additional coupling stiffness. A positive residual hysteretic force leads to a positive overall deviation of the dynamic equilibrium location regardless of the positive or negative high-order stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen, L.Q., Li, X., Lu, Z.Q., Zhang, Y.W., Ding, H.: Dynamic effects of weights on vibration reduction by a nonlinear energy sink moving vertically. J. Sound Vib. 451, 99–119 (2019)

    Article  Google Scholar 

  2. Zhou, J., Xiao, Q., Xu, D., Ouyang, H., Li, Y.: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. J. Sound Vib. 394, 59–74 (2017)

    Article  Google Scholar 

  3. Zhang, Y.W., Lu, Y.N., Zhang, W., Teng, Y.Y., Yang, H.X., Yang, T.Z., Chen, L.Q.: Nonlinear energy sink with inerter. Mechanical Systems and Signal Processing 125, 52–64 (2019)

    Article  Google Scholar 

  4. Chen, Y.Y., Yan, L.W., Sze, K.Y., Chen, S.H.: Generalized hyperbolic perturbation method for homoclinic solutions of strongly nonlinear autonomous systems. Applied Mathematics and Mechanics (English Edition) 33(9), 1137–1152 (2012)

    Article  MathSciNet  Google Scholar 

  5. Lacarbonara, W.: Nonlinear structural mechanics. Springer, New York (2013)

    Book  Google Scholar 

  6. Yang, K., Harne, R.L., Wang, K.W., Huang, H.: Investigation of a bistable dual-stage vibration isolator under harmonic excitation. Smart Mater. Struct. 23(4), 045033 (2014)

    Article  Google Scholar 

  7. Wang, X.L., Zhou, J.X., Xu, D.L., Ouyang, H.J., Duan, Y.: Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dyn. 87(1), 633–646 (2017)

    Article  Google Scholar 

  8. Guo, P.F., Lang, Z.Q., Peng, Z.K.: Analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation systems. Nonlinear Dyn. 67(4), 2671–2687 (2012)

    Article  MathSciNet  Google Scholar 

  9. Tang, B., Brennan, M.J.: A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332(3), 510–520 (2013)

    Article  Google Scholar 

  10. Lu, Z.Q., Brennan, M.J., Chen, L.Q.: On the transmissibilities of nonlinear vibration isolation system. J. Sound Vib. 375, 28–37 (2016)

    Article  Google Scholar 

  11. Yang, J., Xiong, Y.P., Xing, J.T.: Vibration power flow and force transmission behaviour of a nonlinear isolator mounted on a nonlinear base. Int. J. Mech. Sci. 115–116, 238–252 (2016)

    Article  Google Scholar 

  12. Huang, X.C., Sun, J.Y., Hua, H.X., Zhang, Z.Y.: The isolation performance of vibration systems with general velocity-displacement-dependent nonlinear damping under base excitation: numerical and experimental study. Nonlinear Dyn. 85(2), 777–796 (2016)

    Article  MathSciNet  Google Scholar 

  13. Gao, Y.Y., Tang, G., Wan, W., Zou, S.H.: Study about nonlinear factor influence on the vibration isolation effect of damper. Mechanics in Engineering 37(5), 590–596 (2015)

    Google Scholar 

  14. Rao, S.S.: Mechanical Vibrations, 5th edn. Prentice Hall, Upper Saddle River (2011)

    Google Scholar 

  15. Xiong, H., Kong, X.R., Li, H.Q., Yang, Z.G.: Vibration analysis of nonlinear systems with the bilinear hysteretic oscillator by using incremental harmonic balance method. Commun. Nonlinear Sci. Numer. Simul. 42, 437–450 (2017)

    Article  MathSciNet  Google Scholar 

  16. Wu, R.P., Bai, H.B., Lu, C.H.: Simplified analysis of hysteresis dry friction vibration isolation system on flexible foundation. Journal of Mechanical Strength 41(1), 44–48 (2019)

    Google Scholar 

  17. Sauter, D., Hagedorn, P.: On the hysteresis of wire cables in Stockbridge dampers. Int. J. Non-Linear Mech. 37(8), 1453–1459 (2002)

    Article  Google Scholar 

  18. Casini, P., Vestroni, F.: Nonlinear resonances of hysteretic oscillators. Acta Mech. 229(2), 939–952 (2018)

    Article  MathSciNet  Google Scholar 

  19. Wong C W, Ni Y Q, Lau S L. Steady-state oscillation of hysteretic differential model. I: response analysis. Journal of Engineering Mechanics. 1994, 120(11): 2271–2298.

  20. Lacarbonara, W., Vestroni, F.: Nonclassical responses of oscillators with hysteresis. Nonlinear Dyn. 32(3), 235–258 (2003)

    Article  Google Scholar 

  21. Yuan, T.C., Yang, J., Chen, L.Q.: A harmonic balance approach with alternating frequency/time domain progress for piezoelectric mechanical systems. Mechanical Systems and Signal Processing 120, 274–289 (2019)

    Article  Google Scholar 

  22. Zhang, Z., Chen, Y.: Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamic system with fractional exponential. Applied Mathematics and Mechanics (English Edition) 35(4), 423–436 (2014)

    Article  MathSciNet  Google Scholar 

  23. Foti F, Martinelli L. Hysteretic behavior of Stockbridge dampers: modelling and parameter identification. Mathematical Problems in Engineering, 2018: 8925121.

  24. Balaji, P.S., Rahman, M.E., Moussa, L., Lau, H.H.: Wire rope isolators for vibration isolation of equipment and structures -a review. IOP Conference Series: Materials Science and Engineering 78(18), 012001 (2015)

    Article  Google Scholar 

  25. Carpineto, N., Lacarbonara, W., Vestroni, F.: Hysteretic tuned mass dampers for structural vibration mitigation. J. Sound Vib. 333(5), 1302–1318 (2014)

    Article  Google Scholar 

  26. Carboni, B., Lacarbonara, W.: Nonlinear dynamic characterization of a new hysteretic device: experiments and computations. Nonlinear Dyn. 83(1), 23–39 (2016)

    Article  Google Scholar 

  27. Carboni, B., Lacarbonara, W., Brewick, P., Masri, S.: Dynamical response identification of a class of nonlinear hysteretic systems. J. Intell. Mater. Syst. Struct. 29(13), 2795–2810 (2018)

    Article  Google Scholar 

  28. Carboni, B., Lacarbonara, W.: Nonlinear vibration absorber with pinched hysteresis: theory and experiments. Journal of Engineering Mechanics 142(5), 04016023 (2016)

    Article  Google Scholar 

  29. Awtar, S., Sen, S.: A generalized constraint model for two-dimensional beam flexures: nonlinear load-displacement formulation. J. Mech. Des. 132, 081008 (2010)

    Article  Google Scholar 

  30. Carboni, B., Lacarbonara, W., Auricchio, F.: Hysteresis of multiconfiguration assemblies of Nitinol and steel strands: experiments and phenomenological identification. Journal of Engineering Mechanics 141(3), 04014135 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China [11902097, 11872159].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, MQ., Chen, LQ. Dynamic effect of constant inertial acceleration on vibration isolation system with high-order stiffness and Bouc–Wen hysteresis. Nonlinear Dyn 103, 2227–2240 (2021). https://doi.org/10.1007/s11071-021-06219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06219-3

Keywords

Navigation