Skip to main content

Advertisement

Log in

Coordinated control strategy for mode transition of DM-PHEV based on MLD

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a hybrid variable cost function model predictive control strategy (HC-MPC) is developed for the mode transition process of a novel motor compound power-split plug-in hybrid electric vehicle (DM-PHEV). Based on the layout of DM-PHEV, the mode transition process from electric driving mode to hybrid driving mode is divided into 5 stages. Considering the hybrid characteristics of mode transition process, the dynamic models under different stages are transmitted into an equivalent mixed-logical dynamical hybrid model. MPC based on hybrid model (H-MPC) is applied as the coordinated controller. Moreover, considering that fixed cost functions for the finite time horizon are not reasonable if stage transition happened during the prediction horizon, so variable cost functions changing with predictable stages is useful for improving the control effect of MPC. H-MPC considering variable cost functions (HC-MPC) is proposed as the coordinate controller in this paper. Simulation and hardware-in-the-loop test show that HC-MPC can efficiently improve the PHEV drivability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

\(T_\mathrm{en\_cmd}\) :

Engine torque command

\(\tau _\mathrm{en}\) :

Time constant of engine

\(T_\mathrm{en\_fric}\) :

Resistance torque of engine

\(n_\mathrm{m1}, n_\mathrm{m2}\) :

Speed of motor 1, 2

\(T_\mathrm{m1\_cmd}, T_\mathrm{m2\_cmd}\) :

Torque command of motor 1, 2

\(x_{\mathrm{p}0}\) :

Initial displacement compressed on return spring

\(x_\mathrm{p}\) :

Displacement of clutch piston away the initial position

\(F_\mathrm{cl}\) :

Reaction force of clutch friction plate on piston

\(Q_\mathrm{c}\) :

Average flow of clutch

\(V_0\) :

Volume of clutch oil chamber

\(\rho \) :

Hydraulic oil density

\(P_s\) :

Oil pressure provided by the tank

\(A_h\) :

Area of valve supporting port

\({{{\tilde{Q}}}}_\mathrm{in}\) :

Average flow of supplying port

\(P_0\) :

Oil pressure of gearbox

\(J_\mathrm{m1}\) :

Equivalent inertia moment of motor 1 and planetary gears

\(J_{r}\) :

Inertia moment of clutch driving shaft speed

\(\omega _{l}\) :

Clutch driven shaft speed

\(J_\mathrm{p}\) :

Inertia moment of planetary mechanism

TDS:

Equivalent elastic shaft of the tire and half shaft

\(k_\mathrm{TDS}\) :

Equivalent torsional stiffness of TDS

\(C_\mathrm{TDS}\) :

Equivalent damping coefficient of TDS

\(i_{0}\) :

Final drive ratio

\(C_\mathrm{d}\) :

Air drag coefficient

\(\theta \) :

Angular displacement

\(m_\mathrm{veh}\) :

Vehicle mass

\(\eta _\mathrm{t}\) :

Efficiency of transmission system

\(\alpha \) :

Road slope

\(n_\mathrm{thresh}\) :

Speed limit of engine drag torque change

\(z_{i}\) :

Continuous auxiliary variables

\(A_\mathrm{fric}\) :

Engine resistance torque coefficient

W :

Clutch slipping energy

QR :

Weight matrix

\(T_\mathrm{en}\) :

Output torque of engine

\(n_\mathrm{en}\) :

Engine speed

\(T_\mathrm{m1}, T_\mathrm{m2}\) :

Output torque of motor 1, 2

\(\tau _\mathrm{m1}, \tau _\mathrm{m2}\) :

Time constant of motor 1, 2

\(k_p\) :

Stiffness of the clutch return spring

\(s_\mathrm{max}\) :

Maximum displacement away the initial position

\(F_\mathrm{p}\) :

Static pressure on clutch piston

\(A_\mathrm{C2}\) :

Clutch piston area

\(x_{\max }\) :

Maximum clutch piston displacement

\(\beta \) :

Effective volume elastic modulus of hydraulic fluid

\({P}_\mathrm{c}\) :

Control pressure of clutch

\(C_h\) :

Valve flow coefficient

\(\tau \) :

Duty cycle of PWM

\({{{\tilde{Q}}}}_\mathrm{out}\) :

Average flow of recycle port

\(J_\mathrm{en}\) :

Inertia moment of engine

\(J_\mathrm{m2}\) :

Equivalent inertia moment of motor 2 and clutch disc

\(J_\mathrm{veh}\) :

Vehicle equivalent inertia

\(\omega _{r}\) :

Clutch driving shaft speed

TH:

Torsional damper spring

\(k_\mathrm{TH}\) :

Equivalent torsional stiffness of TH

\(C_\mathrm{TH}\) :

Equivalent damping coefficient of TH

\(i_{2}\) :

Gear ratio of motor 2

\(T_{f}\) :

Equivalent running resistance torque of vehicle

A :

Effective frontal area

v :

Vehicle speed

f :

Roll resistance coefficient

R :

Radius of tire

\(\delta _i\) :

Introducing binary auxiliary variable

\(T_\mathrm{ega},n_\mathrm{ega}\) :

Predefined positive scalar

j :

Vehicle jerk

\(J_i\) :

Cost function

\(\varepsilon \) :

Auxiliary variables in cost functions

\(x_e\) :

State variable reference value

References

  1. Malikopoulos, A.A.: Supervisory power management control algorithms for hybrid electric vehicles: a survey. IEEE Trans. Intell. Transport. Syst. 15(5), 1869–1885 (2014)

    Article  Google Scholar 

  2. Zhang, F., Hu, X., Langari, R., Cao, D.: Energy management strategies of connected hevs and phevs: recent progress and outlook. Prog. Energy Combust. Sci. 73, 235–256 (2019)

    Article  Google Scholar 

  3. Wang, F., Zhang, J., Xu, X., Cai, Y., Zhou, Z., Sun, X.: New teeth surface and back (TSB) modification method for transient torsional vibration suppression of planetary gear powertrain for an electric vehicle. Mech. Mach. Theory 140, 520–537 (2019)

    Article  Google Scholar 

  4. Wang, F., Zhang, J., Xu, X., Cai, Y., Zhou, Z., Sun, X.: New method for power allocation of multi-power sources considering speed-up transient vibration of planetary power-split hevs driveline system. Mech. Syst. Signal Process. 128, 1–18 (2019)

    Article  Google Scholar 

  5. Hung, Y.H., Tung, Y.M., Chang, C.H.: Optimal control of integrated energy management/mode switch timing in a three-power-source hybrid powertrain. Appl. Energy 173, 184–196 (2016)

    Article  Google Scholar 

  6. Martinez, C.M., Hu, X., Cao, D., Velenis, E., Gao, B., Wellers, M.: Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective. IEEE Trans. Veh. Technol. 66(6), 4534–4549 (2017)

    Article  Google Scholar 

  7. Zeng, X., Wang, J.: Optimizing the energy management strategy for plug-in hybrid electric vehicles with multiple frequent routes. IEEE Trans. Control Syst. Technol. 27(1), 394–400 (2019)

    Article  Google Scholar 

  8. Liu, J., Chen, Y., Li, W., Shang, F., Zhan, J.: Hybrid-trip-model-based energy management of a phev with computation-optimized dynamic programming. IEEE Trans. Veh. Technol. 67(1), 338–353 (2018)

    Article  Google Scholar 

  9. Wang, F., Zhang, J., Xu, X., Cai, Y., Zhou, Z., Sun, X.: A comprehensive dynamic efficiency-enhanced energy management strategy for plug-in hybrid electric vehicles. Appl. Energy 247, 657–669 (2019)

    Article  Google Scholar 

  10. Xu, X., Zhang, T., Wang, F., Wang, S., Zhou, Z.: Integrated energy management strategy of powertrain and cooling system for phev. Int. J. Green Energy 17(5), 319–331 (2020)

    Article  Google Scholar 

  11. Wang, C., Zhao, Z., Zhang, T., Li, M.: Mode transition coordinated control for a compound power-split hybrid car. Mech. Syst. Signal Process. 87, 192–205 (2017)

    Article  Google Scholar 

  12. Zeng, X., Yang, N., Wang, J., Song, D., Zhang, N., Shang, M., Liu, J.: Predictive-model-based dynamic coordination control strategy for power-split hybrid electric bus. Mech. Syst. Signal Process. 60–61, 785–798 (2015)

    Article  Google Scholar 

  13. Liu, W.: Introduction to hybrid vehicle system modeling and control, pp. 299–323 (2013)

  14. Shen, D., Guehmann, C., Zhang, T.: Coordinated mode transition control for a novel compound power-split hybrid electric vehicle. In: WCX SAE World Congress Experience (2019)

  15. Yang, C., Shi, Y., Li, L., Wang, X.: Efficient mode transition control for parallel hybrid electric vehicle with adaptive dual-loop control framework. IEEE Trans. Veh. Technol. 69(2), 1519–1532 (2020)

    Article  Google Scholar 

  16. Yang, C., Jiao, X., Li, L., Zhang, Y., Chen, Z.: A robust h-infinity control-based hierarchical mode transition control system for plug-in hybrid electric vehicle. Mech. Syst. Signal Process. 99, 326–344 (2018)

    Article  Google Scholar 

  17. Wang, F., Xia, J., Xu, X., Cai, Y., Zhou, Z., Sun, X.: New clutch oil-pressure establishing method design of phevs during mode transition process for transient torsional vibration suppression of planetary power-split system. Mech. Mach. Theory 148, 103801 (2020)

    Article  Google Scholar 

  18. Song, S., Guan, Y., Fu, Z., Li, H.: Switching control from motor driving mode to hybrid driving mode for phev. In: 2017 Chinese Automation Congress (CAC), pp. 4209–4214 (2017)

  19. Gao, A., Fu, Z., Tao, F.: Dynamic coordinated control based on sliding mode controller during mode switching with ice starting for an hev. IEEE Access 8, 60428–60443 (2020)

    Article  Google Scholar 

  20. Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Autom. Control 43(1), 31–45 (1998)

    Article  MathSciNet  Google Scholar 

  21. Bemporad, A., Heemels, W.P.M.H., De Schutter, B.: On hybrid systems and closed-loop mpc systems. IEEE Trans. Autom. Control 47(5), 863–869 (2002)

    Article  MathSciNet  Google Scholar 

  22. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. In: Automatica, vol. 35 (1999)

  23. Kou, Z., Song, C., Pan, Z.: Mld-based predictive control of energy management for hybrid electric bus. In: Proceedings of the 10th World Congress on Intelligent Control and Automation, pp. 2806–2811 (2012)

  24. Sun, X., Zhang, H., Cai, Y., Wang, S., Chen, L.: Hybrid modeling and predictive control of intelligent vehicle longitudinal velocity considering nonlinear tire dynamics. Nonlinear Dyn. 97, 1–16 (2019)

    Article  Google Scholar 

  25. Su, Y., Hu, M., Su, L., Qin, D., Zhang, T., Fu, C.: Dynamic coordinated control during mode transition process for a compound power-split hybrid electric vehicle. Mech. Syst. Signal Process. 107, 221–240 (2018)

    Article  Google Scholar 

  26. Zhao, C., Zu, B., Xu, Y., Wang, Z., Zhou, J., Liu, L.: Design and analysis of an engine-start control strategy for a single-shaft parallel hybrid electric vehicle. Energy 202, 117621 (2020)

    Article  Google Scholar 

  27. Hongwei, H., Hequan, W., Zhiyong, Z., Yimin, S.: Research on trajectory tracking control for wet clutch engagement based on smc. Procedia Eng. 15, 2742–2746 (2011)

    Article  Google Scholar 

  28. Zhang, H., Qin, Y., Li, X., Liu, X., Yan, J.: Power management optimization in plug-in hybrid electric vehicles subject to uncertain driving cycles. eTransportation 3, 100029 (2020)

    Article  Google Scholar 

  29. Bemporad, A., Morari, M.: Predictive control of constrained hybrid systems. In: Nonlinear Model Predictive Control, pp. 71–98 (2000)

  30. Bemporad, A., Borrelli, F., Morari, M.: Piecewise linear optimal controllers for hybrid systems. In: Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No. 00CH36334), vol. 2, pp. 1190–1194 (2000)

  31. Borrelli, F., Bemporad, A., Fodor, M., Hrovat, D.: An mpc/hybrid system approach to traction control. IEEE Trans. Control Syst. Technol. 14(3), 541–552 (2006)

    Article  Google Scholar 

  32. Zhou, S., Walker, P., Tian, Y., Zhang, N.: Mode switching analysis and control for a parallel hydraulic hybrid vehicle. Veh. Syst. Dyn. 1–21 (2020)

  33. Zhang, H., Zhang, Y., Yin, C.: Hardware-in-the-loop simulation of robust mode transition control for a series-parallel hybrid electric vehicle. IEEE Trans. Veh. Technol. 65(3), 1059–1069 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Project [No. 2017YFB0103200], the National Natural Science Foundation of China [No. 51705204], Six Talent Peaks Project in Jiangsu Province (CN) [No. JXQC-036], the China Scholarship Council [No. 201908320221].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Xu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Xu, X., Wang, F. et al. Coordinated control strategy for mode transition of DM-PHEV based on MLD. Nonlinear Dyn 103, 809–832 (2021). https://doi.org/10.1007/s11071-020-06126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06126-z

Keywords

Navigation