Skip to main content

Advertisement

Log in

On nonlinear energy flows in nonlinearly coupled oscillators with equal mass

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Due to the near monopoly held by nonlinear energy sinks in the study of targeted energy transfer, little research has been done on the flow of mechanical energy between oscillators with comparable mass. The goal of the present paper is to investigate the flow of mechanical energy between two nonlinearly coupled oscillators with comparable mass that arise due to the breaking of dynamic reciprocity. The first oscillator represents the prototypical linear oscillator (LO), whereas the second oscillator represents a nonlinear oscillator (NO) that is nonlinearly coupled to the LO only. By breaking dynamic reciprocity, one-way energy propagation is achieved in the system, such that energy can only be irreversibly transferred from the NO to the LO. As such, the NO is isolated from the LO for physically reasonable energies whenever it is not directly excited. Moreover, when the NO is directly excited, there exist regimes where the LO, despite being linear and of comparable mass to the NO, behaves like a nonlinear energy sink and parasitically and irreversibly absorbs energy from the NO. The theoretical portion of this works employs direct numerical simulation of the structure to explore the strongly nonreciprocal dynamics and resulting energy transfers. The theoretical results are then verified through experimental measurements of a comparable structure. The present study promotes a new paradigm for investigating energy transfer in mechanical structures and opens the way for passively controlling the flow of energy in complex mechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear targeted energy transfer in mechanical and structural systems I. (2008)

  2. Vakakis, A.F.: Passive nonlinear targeted energy transfer. Philos. Trans. R. Soc. Lond. A Math., Phys. Eng. Sci. 376, 20170132 (2018). https://doi.org/10.1098/rsta.2017.0132

  3. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Enhancing the robustness of aeroelastic instability suppression using multi-degree-of-freedom nonlinear energy sinks. AIAA J. 46, 1371–1394 (2008). https://doi.org/10.2514/1.30302

    Article  Google Scholar 

  4. AL-Shudeifat, M.A., Wierschem, N., Vakakis, A.F., Bergman, L.A., Spencer, Jr., Billie F.: Numerical and experimental investigation of a new nonlinear energy sink for passive shock mitigation. 1161–1164 (2012). https://doi.org/https://doi.org/10.1115/DETC2012-70453

  5. Hubbard, S.A., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Targeted energy transfer between a model flexible wing and nonlinear energy sink. J. Aircraft. 47, 1918–1931 (2010). https://doi.org/10.2514/1.C001012

    Article  Google Scholar 

  6. Hubbard, S.A., McFarland, D.M., Bergman, L.A., Vakakis, A.F., Andersen, G.: Targeted energy transfer between a swept wing and winglet-housed nonlinear energy sink. AIAA J. 52, 2633–2651 (2014). https://doi.org/10.2514/1.J052538

    Article  Google Scholar 

  7. Luongo, A., Zulli, D.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81, 425–435 (2015)

    Article  MathSciNet  Google Scholar 

  8. Gourc, E., Seguy, S., Michon, G., Berlioz, A., Mann, B.P.: Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink. J. Sound Vib. 355, 392–406 (2015)

    Article  Google Scholar 

  9. Bichiou, Y., Hajj, M.R., Nayfeh, A.H.: Effectiveness of a nonlinear energy sink in the control of an aeroelastic system. Nonlinear Dyn. 86, 2161–2177 (2016)

    Article  MathSciNet  Google Scholar 

  10. Darabi, A., Leamy, M.J.: Clearance-type nonlinear energy sinks for enhancing performance in electroacoustic wave energy harvesting. Nonlinear Dyn. 87, 2127–2146 (2017)

    Article  Google Scholar 

  11. Yang, K., Zhang, Y.-W., Ding, H., Yang, T.-Z., Li, Y., Chen, L.-Q.: Nonlinear energy sink for whole-spacecraft vibration reduction. J. Vib. Acoust. 139, 021011–19 (2017)

    Article  Google Scholar 

  12. Zhang, Y.-W., Yuan, B., Fang, B., Chen, L.-Q.: Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink. Nonlinear Dyn. 87, 1159–1167 (2017)

    Article  Google Scholar 

  13. Ebrahimzade, N., Dardel, M., Shafaghat, R.: Investigating the aeroelastic behaviors of rotor blades with nonlinear energy sinks. AIAA J. 56, 2856–2869 (2018). https://doi.org/10.2514/1.J056530

    Article  Google Scholar 

  14. Gendelman, O., Manevitch, L.I., Vakakis, A.F., M’Closkey, R.: Energy pumping in nonlinear mechanical oscillators: Part I–dynamics of the underlying Hamiltonian systems. J. Appl. Mech., Trans. ASME. 68, 34–41 (2001)

    Article  MathSciNet  Google Scholar 

  15. Vakakis, A.F., Gendelman, O.: Energy pumping in nonlinear mechanical oscillators: Part II–resonance capture. J. Appl. Mech. Trans. ASME. 68, 42–48 (2001). https://doi.org/10.1115/1.1345525

    Article  MathSciNet  MATH  Google Scholar 

  16. McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experimental study of non-linear energy pumping occurring at a single fast frequency. Int. J. Nonlinear Mech. 40, 891–899 (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.11.001

    Article  MATH  Google Scholar 

  17. Moore, K.J., Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Time-series-based nonlinear system identification of strongly nonlinear attachments. J. Sound Vib. 438, 13–32 (2019). https://doi.org/10.1016/j.jsv.2018.09.033

    Article  Google Scholar 

  18. Qiu, D., Li, T., Seguy, S., Paredes, M.: Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design. Nonlinear Dyn. 92, 443–461 (2018). https://doi.org/10.1007/s11071-018-4067-7

    Article  Google Scholar 

  19. AL-Shudeifat, M.A., Saeed, A.S.: Frequency-energy dependence of the bistable nonlinear energy sink. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 8: 29th Conference on Mechanical Vibration and Noise, p. V008T12A022. ASME, Cleveland, OH (2017)

  20. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89, 179–196 (2017). https://doi.org/10.1007/s11071-017-3444-y

    Article  Google Scholar 

  21. Lee, Y.S., Nucera, F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments. Physica D 238, 1868–1896 (2009). https://doi.org/10.1016/j.physd.2009.06.013

    Article  MATH  Google Scholar 

  22. Wang, J., Wierschem, N., Spencer, B.F., Lu, X.: Numerical and experimental study of the performance of a single-sided vibro-impact track nonlinear energy sink. Earthq. Eng. Struct. Dyn. 45, 635–652 (2016). https://doi.org/10.1002/eqe.2677

    Article  Google Scholar 

  23. Li, T., Gourc, E., Seguy, S., Berlioz, A.: Dynamics of two vibro-impact nonlinear energy sinks in parallel under periodic and transient excitations. Int. J. Non-Linear Mech. 90, 100–110 (2017)

    Article  Google Scholar 

  24. Li, T., Seguy, S., Berlioz, A.: On the dynamics around targeted energy transfer for vibro-impact nonlinear energy sink. Nonlinear Dyn. 87, 1453–1466 (2017)

    Article  Google Scholar 

  25. Moore, K.J., Bunyan, J., Tawfick, S., Gendelman, O.V., Shuangbao, L., Leamy, M.J., Vakakis, A.F.: Non-reciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry and scale hierarchy. Phys. Rev. E. 97, 012219 (2018)

    Article  Google Scholar 

  26. Bunyan, J., Moore, K.J., Mojahed, A., Fronk, M.D., Leamy, M., Tawfick, S., Vakakis, A.F.: Acoustic nonreciprocity in a lattice incorporating nonlinearity, asymmetry, and internal scale hierarchy: experimental study. Phys. Rev. E. 97, 052211 (2018). https://doi.org/10.1103/PhysRevE.97.052211

    Article  Google Scholar 

  27. Fronk, M.D., Tawfick, S., Daraio, C., Li, S., Vakakis, A., Leamy, M.J.: Acoustic non-reciprocity in lattices with nonlinearity, internal hierarchy, and asymmetry: computational study. J. Vib. Acoust. (2019). https://doi.org/10.1115/1.4043783

    Article  Google Scholar 

  28. Blanchard, A., Sapsis, T.P., Vakakis, A.F.: Non-reciprocity in nonlinear elastodynamics. J. Sound Vib. 412, 326–335 (2018). https://doi.org/10.1016/j.jsv.2017.09.039

    Article  Google Scholar 

  29. Moore, K.J., Vakakis, A.F.: Wave non-reciprocity at a nonlinear structural interface. Acta Mech. 229, 4057–4070 (2018). https://doi.org/10.1007/s00707-018-2212-5

    Article  MathSciNet  Google Scholar 

  30. Chen, Y., Li, X., Nassar, H., Norris, A.N., Daraio, C., Huang, G.: Nonreciprocal wave propagation in a continuum-based metamaterial with space-time modulated resonators. Phys. Rev. Appl. 11, 064052 (2019). https://doi.org/10.1103/PhysRevApplied.11.064052

    Article  Google Scholar 

  31. Mojahed, A., Bunyan, J., Tawfick, S., Vakakis, A.F.: Tunable acoustic nonreciprocity in strongly nonlinear waveguides with asymmetry. Phys. Rev. Appl. 12, 034033 (2019). https://doi.org/10.1103/PhysRevApplied.12.034033

    Article  Google Scholar 

  32. Fang, L., Darabi, A., Mojahed, A., Vakakis, A.F., Leamy, M.J.: Broadband non-reciprocity with robust signal integrity in a triangle-shaped nonlinear 1D metamaterial. Nonlinear Dyn. 100, 1–13 (2020). https://doi.org/10.1007/s11071-020-05520-x

    Article  Google Scholar 

  33. Dantas, M.J.H., Balthazar, J.M.: On energy transfer between linear and nonlinear oscillators. J. Sound Vib. 315, 1047–1070 (2008). https://doi.org/10.1016/j.jsv.2008.02.033

    Article  Google Scholar 

  34. Costa, S.N.J., Hassmann, C.H.G., Balthazar, J.M., Dantas, M.J.H.: On energy transfer between vibrating systems under linear and nonlinear interactions. Nonlinear Dyn. 57, 57–67 (2009). https://doi.org/10.1007/s11071-008-9419-2

    Article  MathSciNet  MATH  Google Scholar 

  35. Pilipchuk, V.N.: Analytical study of vibrating systems with strong non-linearities by employing saw-tooth time transformations. J. Sound Vib. 192, 43–64 (1996)

    Article  MathSciNet  Google Scholar 

  36. Manevitch, L.I.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25, 95–109 (2001). https://doi.org/10.1023/A:1012994430793

    Article  MathSciNet  MATH  Google Scholar 

  37. Kerschen, G., Vakakis, A.F., Lee, Y.S., Mcfarland, D.M., Kowtko, J.J., Bergman, L.A.: Energy transfers in a system of two coupled oscillators with essential nonlinearity: 1:1 resonance manifold and transient bridging orbits. Nonlinear Dyn. 42, 283–303 (2005). https://doi.org/10.1007/s11071-005-4475-3

    Article  MathSciNet  MATH  Google Scholar 

  38. Lamarque, C.-H., Gendelman, O.V., Ture Savadkoohi, A., Etcheverria, E.: Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mech. 221, 175 (2011). https://doi.org/10.1007/s00707-011-0492-0

    Article  MATH  Google Scholar 

  39. Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Strongly nonlinear beats in the dynamics of an elastic system with a strong local stiffness nonlinearity: analysis and identification. J. Sound Vib. 333, 2054–2072 (2014). https://doi.org/10.1016/j.jsv.2013.11.021

    Article  Google Scholar 

  40. Kurt, M., Eriten, M., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Frequency–energy plots of steady-state solutions for forced and damped systems, and vibration isolation by nonlinear mode localization. Commun. Nonlinear Sci. Numer. Simul. 19, 2905–2917 (2014). https://doi.org/10.1016/j.cnsns.2013.12.018

    Article  MathSciNet  MATH  Google Scholar 

  41. Kurt, M., Slavkin, I., Eriten, M., McFarland, D.M., Gendelman, O.V., Bergman, L.A., Vakakis, A.F.: Effect of 1:3 resonance on the steady-state dynamics of a forced strongly nonlinear oscillator with a linear light attachment. Arch Appl Mech. 84, 1189–1203 (2014). https://doi.org/10.1007/s00419-014-0877-3

    Article  Google Scholar 

  42. Manevitch, L.I., Koroleva, I.P.: Limiting phase trajectories as an alternative to nonlinear normal modes. Procedia IUTAM. 19, 144–151 (2016). https://doi.org/10.1016/j.piutam.2016.03.019

    Article  Google Scholar 

  43. Yacobi, G., Kislovsky, V., Kovaleva, M., Starosvetsky, Y.: Unidirectional energy transport in the symmetric system of non-linearly coupled oscillators and oscillatory chains. Nonlinear Dyn. 98, 2687–2709 (2019). https://doi.org/10.1007/s11071-019-05230-z

    Article  MATH  Google Scholar 

  44. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  Google Scholar 

  45. Silva, P.B., Leamy, M.J., Geers, M.G.D., Kouznetsova, V.G.: Application of the method of multiple scales to unravel energy exchange in nonlinear locally resonant metamaterials. https://arxiv.org/abs/1812.05713 [cond-mat, physics:physics]. (2018)

  46. Silva, P.B., Leamy, M.J., Geers, M.G.D., Kouznetsova, V.G.: Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance. Phys. Rev. E. 99, 063003 (2019). https://doi.org/10.1103/PhysRevE.99.063003

    Article  Google Scholar 

  47. Luongo, A., Zulli, D.: Dynamic analysis of externally excited NES-controlled systems via a mixed multiple scale/harmonic balance algorithm. Nonlinear Dyn. 70, 2049–2061 (2012). https://doi.org/10.1007/s11071-012-0597-6

    Article  MathSciNet  Google Scholar 

  48. Sapsis, T., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments. J. Vib. Acoust. 134, 011016–01101612 (2012). https://doi.org/10.1115/1.4005005

    Article  Google Scholar 

  49. Kerschen, G., Kowtko, J.J., Mcfarland, D.M., Bergman, L.A., Vakakis, A.F.: Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators. Nonlinear Dyn. 47, 285–309 (2007). https://doi.org/10.1007/s11071-006-9073-5

    Article  MathSciNet  MATH  Google Scholar 

  50. Oliva, M., Barone, G., Navarra, G.: Optimal design of Nonlinear Energy Sinks for SDOF structures subjected to white noise base excitations. Eng. Struct. 145, 135–152 (2017)

    Article  Google Scholar 

  51. Chen, Y.: A Non-Model Based Expansion Methodology for Dynamic Characterization. PhD diss., University of Massachusetts Lowell (2019)

  52. Silva, C.E., Maghareh, A., Tao, H., Dyke, S.J., Gibert, J.: Evaluation of energy and power flow in a nonlinear energy sink attached to a linear primary oscillator. J. Vib. Acoust. (2019). https://doi.org/10.1115/1.4044450

    Article  Google Scholar 

  53. Vakakis, A.F., Manevitch, L.I., Mikhlin, Y.V., Pilipchuk, V.N., Zevin, A.: Normal Modes and Localization of Nonlinear Systems. Wiley, New York (1996)

    Book  Google Scholar 

  54. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, Part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23, 170–194 (2009). https://doi.org/10.1016/j.ymssp.2008.04.002

    Article  Google Scholar 

  55. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.-C.: Nonlinear normal modes, Part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23, 195–216 (2009). https://doi.org/10.1016/j.ymssp.2008.04.003

    Article  Google Scholar 

  56. Addison, P.S.: The illustrated wavelet transform handbook introductory theory and applications in science, engineering, medicine and finance. Taylor & Francis, New York (2002)

    Book  Google Scholar 

  57. Kim Saang, B., Spencer, B.F., Yun, C.-B.: Frequency domain identification of multi-input, multi-output systems considering physical relationships between measured variables. J Eng. Mech. 131, 461–472 (2005). https://doi.org/10.1061/(ASCE)0733-9399(2005)131:5(461)

    Article  Google Scholar 

Download references

Funding

No funding was provided for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keegan J. Moore.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest or competing interests regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Moore, K.J. On nonlinear energy flows in nonlinearly coupled oscillators with equal mass. Nonlinear Dyn 103, 343–366 (2021). https://doi.org/10.1007/s11071-020-06120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06120-5

Keywords

Navigation