Skip to main content
Log in

Design and experimental validation of a nonlinear controller for underactuated surface vessels

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 03 March 2021

This article has been updated

Abstract

This paper addresses the problem of trajectory tracking control of an underactuated surface vessel moving in a two-dimensional space in the presence of unknown disturbances. In a preliminary stage, a couple of nonlinear observers is derived to obtain an estimate of the perturbations, which are assumed to originate from unmodeled time-varying dynamics and/or exogenous disturbances. Secondly, we resort to the Lyapunov-based backstepping technique to design two stabilizing control laws, governing the thrust force and torque actuations, that are proved to render the overall control system error globally uniformly bounded. Each control law yields an actuator signal which is implicitly bounded with respect to the position error, and the resulting estimation and tracking errors can be made arbitrarily small by tweaking the control parameters. A set of realistic simulations results is presented to validate our strategy. Experimental trials using an autonomous surface vehicle are also showcased to further demonstrate the efficacy and robustness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

Notes

  1. At some point in the calculations, the term \(r(t)\mathbf {z}_{2}^{\mathsf {T}}(t)\mathbf {M}\mathbf {S}\mathbf {M}\mathbf {z}_{2}(t)\) arises; it equals zero due to the general property of the vector cross-product.

  2. Note that this is not a necessary condition, but one which is sufficient to guarantee that errors are bounded and converge, i.e., are dynamically stable.

  3. This particular lake, located on the northeast side of the University of Macau campus, has a river flowing into and out of it.

References

  1. Reyhanoglu, M.: Exponential stabilization of an underactuated autonomous surface vessel. Automatica 33(12), 2249–2254 (1997). https://doi.org/10.1016/s0005-1098(97)00141-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Pettersen, K., Egeland, O.: Robust control of an underactuated surface vessel with thruster dynamics. In: Proceedings of the 1997 American control conference (Cat. No.97CH36041). IEEE (1997). https://doi.org/10.1109/acc.1997.612098

  3. Caccia, M., Bono, R., Bruzzone, G., Bruzzone, G., Spirandelli, E., Veruggio, G., Stortini, A.: Design and exploitation of an autonomous surface vessel for the study of sea-air interactions. In: Proceedings of the 2005 IEEE international conference on robotics and automation. IEEE (2005). https://doi.org/10.1109/robot.2005.1570665

  4. Hitz, G., Pomerleau, F., Garneau, M.E., Pradalier, C., Posch, T., Pernthaler, J., Siegwart, R.: Autonomous inland water monitoring: design and application of a surface vessel. IEEE Robot. Autom. Mag. 19(1), 62–72 (2012). https://doi.org/10.1109/mra.2011.2181771

    Article  Google Scholar 

  5. Sun, Z., Zhang, G., Qiao, L., Zhang, W.: Robust adaptive trajectory tracking control of underactuated surface vessel in fields of marine practice. J. Mar. Sci. Technol. 23(4), 950–957 (2018). https://doi.org/10.1007/s00773-017-0524-0

    Article  Google Scholar 

  6. Ashrafiuon, H., Nersesov, S., Clayton, G.: Trajectory tracking control of planar underactuated vehicles. IEEE Trans. Autom. Control 62(4), 1959–1965 (2017). https://doi.org/10.1109/tac.2016.2584180

    Article  MathSciNet  MATH  Google Scholar 

  7. Mazenc, F., Pettersen, K., Nijmeijer, H.: Global uniform asymptotic stabilization of an underactuated surface vessel. IEEE Trans. Autom. Control 47(10), 1759–1762 (2002). https://doi.org/10.1109/tac.2002.803554

    Article  MathSciNet  MATH  Google Scholar 

  8. Pettersen, K., Mazenc, F., Nijmeijer, H.: Global uniform asymptotic stabilization of an underactuated surface vessel: experimental results. IEEE Trans. Control Syst. Technol. 12(6), 891–903 (2004). https://doi.org/10.1109/tcst.2004.833643

    Article  MATH  Google Scholar 

  9. Jiang, Z.P.: Global tracking control of underactuated ships by Lyapunov’s direct method. Automatica 38(2), 301–309 (2002). https://doi.org/10.1016/s0005-1098(01)00199-6

    Article  MATH  Google Scholar 

  10. Dong, W., Guo, Y.: Global time-varying stabilization of underactuated surface vessel. IEEE Trans. Autom. Control 50(6), 859–864 (2005). https://doi.org/10.1109/tac.2005.849248

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghommam, J., Mnif, F., Benali, A., Derbel, N.: Asymptotic backstepping stabilization of an underactuated surface vessel. IEEE Trans. Control Syst. Technol. 14(6), 1150–1157 (2006). https://doi.org/10.1109/tcst.2006.880220

    Article  Google Scholar 

  12. Miao, J., Wang, S., Tomovic, M.M., Zhao, Z.: Compound line-of-sight nonlinear path following control of underactuated marine vehicles exposed to wind, waves, and ocean currents. Nonlinear Dyn. 89(4), 2441–2459 (2017). https://doi.org/10.1007/s11071-017-3596-9

    Article  MathSciNet  Google Scholar 

  13. Takahashi, Y., Nakaura, S., Sampei, M.: Position control of surface vessel with unknown disturbances. In: 2007 46th IEEE conference on decision and control. IEEE (2007). https://doi.org/10.1109/cdc.2007.4434654

  14. Gu, N., Peng, Z., Wang, D., Shi, Y., Wang, T.: Anti-disturbance coordinated path-following control of robotic autonomous surface vehicles: theory and experiment. In: IEEE/ASME transactions on mechatronics, pp. 1–1 (2019). https://doi.org/10.1109/tmech.2019.2929216

  15. Peng, Z., Wang, J., Han, Q.L.: Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization. IEEE Trans. Ind. Electr. 66(11), 8724–8732 (2019). https://doi.org/10.1109/tie.2018.2885726

    Article  Google Scholar 

  16. Peng, Z., Wang, J.: Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks. IEEE Trans. Syst. Man Cybern. Syst. 48(4), 535–544 (2018). https://doi.org/10.1109/tsmc.2017.2697447

    Article  Google Scholar 

  17. Yin, Z., He, W., Yang, C.: Tracking control of a marine surface vessel with full-state constraints. Int. J. Syst. Sci. 48(3), 535–546 (2016). https://doi.org/10.1080/00207721.2016.1193255

    Article  MathSciNet  MATH  Google Scholar 

  18. Elmokadem, T., Zribi, M., Youcef-Toumi, K.: Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dyn. 84(2), 1079–1091 (2015). https://doi.org/10.1007/s11071-015-2551-x

    Article  MathSciNet  MATH  Google Scholar 

  19. von Ellenrieder, K.D.: Dynamic surface control of trajectory tracking marine vehicles with actuator magnitude and rate limits. Automatica 105, 433–442 (2019). https://doi.org/10.1016/j.automatica.2019.04.018

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, W., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electr. 47(4), 932–938 (2000)

    Article  Google Scholar 

  21. Peng, Z., Wang, J., Wang, J.: Constrained control of autonomous underwater vehicles based on command optimization and disturbance estimation. IEEE Trans. Ind. Electr. 66(5), 3627–3635 (2019). https://doi.org/10.1109/tie.2018.2856180

    Article  Google Scholar 

  22. Wang, H., Wang, D., Peng, Z.: Adaptive dynamic surface control for cooperative path following of marine surface vehicles with input saturation. Nonlinear Dyn. 77(1–2), 107–117 (2014). https://doi.org/10.1007/s11071-014-1277-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, L., Wang, D., Peng, Z.: Direct and composite iterative neural control for cooperative dynamic positioning of marine surface vessels. Nonlinear Dyn. 81(3), 1315–1328 (2015). https://doi.org/10.1007/s11071-015-2071-8

    Article  MATH  Google Scholar 

  24. Xie, W., Cabecinhas, D., Cunha, R., Silvestre, C.: Robust motion control of an underactuated hovercraft. IEEE Trans. Control Syst. Technol. 27(5), 2195–2208 (2019). https://doi.org/10.1109/tcst.2018.2862861

    Article  Google Scholar 

  25. Cabecinhas, D., Silvestre, C.: Trajectory tracking control of a nonlinear autonomous surface vessel. In: 2019 American control conference (ACC). IEEE (2019). https://doi.org/10.23919/acc.2019.8815125

  26. Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362–1379 (2007)

    Article  MathSciNet  Google Scholar 

  27. Du, J., Hu, X., Krstić, M., Sun, Y.: Robust dynamic positioning of ships with disturbances under input saturation. Automatica 73, 207–214 (2016). https://doi.org/10.1016/j.automatica.2016.06.020

    Article  MathSciNet  MATH  Google Scholar 

  28. Blanke, M., Lindegaard, K.P., Fossen, T.I.: Dynamic model for thrust generation of marine propellers. In: 5th IFAC conference on manoeuvring and control of marine craft, pp. 363–368. International Federation of Automatic Control (2000)

Download references

Funding

This work was partly funded by the Macau Science and Technology Development Fund under Grant FDCT/0146/2019/A3, by the Project MYRG2018-00198-FST of the University of Macau and by LARSyS FCT Project UIDB/50009/2020. The work of David Cabecinhas was supported by FCT Scientific Employment Stimulus Grant CEECIND/04199/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Silvestre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The correct figures 2, 3, 4, 5, and 6 are shown in the correction article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Reis, J., Cabecinhas, D. et al. Design and experimental validation of a nonlinear controller for underactuated surface vessels. Nonlinear Dyn 102, 2563–2581 (2020). https://doi.org/10.1007/s11071-020-06058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06058-8

Keywords

Navigation