Skip to main content
Log in

Intraspecific competition of predator for prey with variable rates in protected areas

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this present study, we systematically explore the periodicity (almost periodic nature) of a dynamical system in time-varying environment, which portrays a special case of prey–predator model governed by non-autonomous differential equations. In particular, we investigate the dynamical characteristics of the underlying prey–predator model by considering modified Leslie–Gower-type model with Crowley–Martin functional response with time-dependent periodic variation of model parameters in a prey reserve area. We show the existence of globally stable periodic solutions. This perpetual prey oscillation results in persistent interference among predator, causing reduced feeding rate at high prey density. A comparative study between the two methods used to prove the existence of periodic (almost periodic) solution of the considered non-autonomous system is also discussed. After showing permanence, existence, uniqueness and global attractivity of the periodic (almost periodic) solution analytically, we demonstrate the typical prey and predator dynamics in time-varying environment using several numerical examples. Partial rank correlation coefficient technique is performed to address how the model output is affected by changes in a specific parameter disregarding the uncertainty over the rest of the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbas, S., Banerjee, M., Hungerbuhler, N.: Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model. J. Math. Anal. Appl. 367, 249–259 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Abbas, S., Sen, M., Banerjee, M.: Almost periodic solution of a non-autonomous model of phytoplankton allelopathy. Nonlinear Dyn. 67, 203–214 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Agarwal, R.P., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  4. Agrawal, R., Jana, D., Upadhyay, R.K., Rao, V.S.H.: Complex dynamics of sexually reproductive generalist predator and gestation delay in a food chain model: double Hopf-bifurcation to Chaos. J. Appl. Math. Comput. (2016). https://doi.org/10.1007/s12190-016-1048-1

    Article  MATH  Google Scholar 

  5. Barbalat, I.: Systemes d’equations differential d’oscillations non-linearities. Rev. Roumaine Math. Pures Appl. 4, 267–270 (1959)

    MATH  Google Scholar 

  6. Bohr, H.: Almost Periodic Functions. American Mathematical Society, Providence (1947)

    MATH  Google Scholar 

  7. Calder, W.A.: Size, Function and Life History. Harvard University Press, Cambridge (1984)

    Google Scholar 

  8. Chen, F., Cao, X.: Existence of almost periodic solution in a ratio-dependent Leslie system with feedback controls. J. Math. Anal. Appl. 341, 1399–1412 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Chen, F., Chen, L., Xie, X.: On a Leslie-Gower predator-prey model incorporating a prey refuge. Nonlinear Anal. Real World Appl. 10, 1905–1908 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Crowley, P.H., Martin, E.K.: Functional responses and interference within and between year classes of a dragonfly population. JNABS 8, 21–211 (1989)

    Google Scholar 

  11. Dawed, M.Y., Koya, P.R., Mekonen, T.T.: Generalist species predator–prey model and maximum sustainable yield. IOSR J. Math. 12(6), 13–24 (2016)

    Google Scholar 

  12. De, D.K., Datta, N.C.: Age, growth, length-weight relationship and relative condition in hilsa, Tenualosa ilisha (Hamilton) from the hooghly estuarine system. Indian J. Fish. 37(3), 199–209 (1990)

    Google Scholar 

  13. Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)

    MATH  Google Scholar 

  14. Dubey, B., Chandra, P., Sinha, P.: A model for fishery resource with reserve area. Nonlinear Anal. Real World Appl. 4, 625–637 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Eklov, P.: Effects of habitat complexity and prey abundance on the spatial and temporal distributions of perch (Perca fluviatilis) and pike (Esox lucius). Can. J. Fish. Aquat. Sci. 54, 1520–1531 (1997)

    Google Scholar 

  16. Fan, M., Kuang, Y.: Dynamics of a non-autonomous predator-prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 295, 15–39 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Fan, M., Wang, K.: Optimal harvesting policy for single species population with periodic coefficients. Math. Biosci. 152, 165–177 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Fink, A.M.: Almost Periodic Differential Equations. Springer, Berlin (1974)

    MATH  Google Scholar 

  19. Gaines, R.E., Mawhin, J.L.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin (1977)

    MATH  Google Scholar 

  20. Guo, D., Sun, J., Liu, Z.: Functional Method in Nonlinear Ordinary Differential Equations. Shandong Scientific Press, Shandong (2005)

    Google Scholar 

  21. Humphries, N.E., Weimerskirchc, H., Queiroza, N., Southalla, E.J., Simsa, D.W.: Foraging success of biological Lévy flights recorded in situ. Proc. Natl. Acad. Sci. 109(19), 7169–7174 (2011)

    Google Scholar 

  22. Jana, D.: Chaotic dynamics of discrete predator–prey system with prey refuge. Appl. Math. Comput. 224, 848–865 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Jana, D., Tripathi, J.P.: Impact of generalist type sexually reproductive top predator interference on the dynamics of a food chain model. Int. J. Dyn. Control (2016). https://doi.org/10.1007/s40435-016-0255-9

    Article  Google Scholar 

  24. Jana, D., Agrawal, R., Upadhyay, R.K.: Dynamics of generalist predator in a stochastic environment: effect of delayed growth and prey refuge. Appl. Math. Comput. 268, 1072–1094 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Jhingran, V.G., Natarajan, A.V.: Derivation of average lengths of different age groups in fishes. J. Fish. Res. Board Can. 26(11), 3037–3076 (1969)

    Google Scholar 

  26. Kar, T.K.: Stability analysis of a predator-prey model incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 10, 681–691 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Landsberg, J.J., Waring, R.H.: A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For. Ecol. Manag. 95, 209–228 (1997)

    Google Scholar 

  28. Lemesle, V., Mailleret, L., Vaissayre, M.: Role of spatial and temporal refuges in the evolution of pest resistance to toxic crops. Acta Biotheor. 58, 89–102 (2010)

    Google Scholar 

  29. Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–1245 (1948)

    MathSciNet  MATH  Google Scholar 

  30. Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 70, 1–18 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Lin, X., Chen, F.: Almost periodic solution for a Volterra model with mutual interference and Beddington–DeAngelis functional response. Appl. Math. Comput. 214, 548–55 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Ma, Z., Wang, S., Li, W., Li, Z.: The effect of prey refuge in a patchy predator–prey system. Math. Biosci. 243, 126–130 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008)

    MathSciNet  MATH  Google Scholar 

  34. McNair, J.N.: The effects of refuges on predator-prey interactions: a reconsideration. Theor. Popul. Biol. 12, 37–48 (1997)

    MathSciNet  Google Scholar 

  35. Mode, C.J., Jacobson, M.E.: On estimating critical population size for an endangered species in the presence of environmental stochasticity. Math. Biosci. 85(2), 185–209 (1987)

    MathSciNet  MATH  Google Scholar 

  36. Olivers, E.G., Jiliberto, R.R.: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhances stability. Ecol. Model. 166, 135–146 (2003)

    Google Scholar 

  37. Parshad, R.D., Basheer, J.D., Tripathi, J.P.: Do prey handling predators really matter: subtle effects of a Crowley–Martin functional response. Chaos Solitons Fractals 103, 410–421 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Peters, R.H.: The Ecological Implications of Body Size. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  39. Pillay, S.R., Rao, V.K.: Observations on the biology and fishery of the hilsa, Hilsa ilisha (Hamilton) of river Godavari. Proc Indo-Pac Fish Counc 10(2), 37–61 (1958)

    Google Scholar 

  40. Pott, P., Silva, J.S.V.D.: Terrestrial and aquatic vegetation diversity of the Pantanal Wetland. Dyn. Pantanal Wetl. S. Am. 37, 111–131 (2015)

    Google Scholar 

  41. Ramakrishnaiah, M.: Biology of Hilsa ilisha (Hamilton) from the Chilka Lake with an account of its racial status. Indian J. Fish 19(1 and 2), 35–53 (1972)

    Google Scholar 

  42. Rinaldi, S., Muratori, S., Kuznetsov, Y.: Multiple attractors, catastrophe and chaos in seasonally perturbed predator-prey communities. Bull. Math. Biol. 55, 15–35 (1993)

    MATH  Google Scholar 

  43. Ripa, J., Lundberg, P.: Noise colour and the risk of population extinctions. Proc. Biol. Sci. 263, 1751–1753 (1996)

    Google Scholar 

  44. Ryan, M.G., Yoder, B.J.: Hydraulic limits to tree height and tree growth. Bio-science 47, 235–242 (1997)

    Google Scholar 

  45. Sarwardi, S., Mandal, P.K., Ray, S.: Analysis of a competitive prey–predator system with a prey refuge. Biosystems 110(3), 133–148 (2012)

    Google Scholar 

  46. Sarwardi, S., Mandal, P.K., Ray, S.: Effect of refuge used by prey in predator-prey model with competition in predator species only. J. Biol. Phys. 39, 701–722 (2013)

    Google Scholar 

  47. Sisteron, M.S., Carriere, Y., Dennehy, T.J., Tabashnik, B.E.: Evolution of resistance to transgenic crops: interactions between insect movement and field distribution. J. Econ. Entomol. 98, 1751–1752 (2005)

    Google Scholar 

  48. Song, X., Bryan, B.A., Paul, K.I., Zhao, G.: Variance-based sensitivity analysis of a forest growth model. Ecol. Model. 247, 135–143 (2012)

    Google Scholar 

  49. Storer, N.P.: A spatially explicit model simulating western corn rootworm (Coleoptera: Chrysomelidae) adaptation to insect-resistant maize. J. Econ. Entomol. 96, 1530–1547 (2003)

    Google Scholar 

  50. Svedang, H., Hornborg, S.: Selective fishing induces density-dependent growth. Nat. Commun. (2014). https://doi.org/10.1038/ncomms5152

    Article  Google Scholar 

  51. Thornton, P.E., Law, B.E., Gholz, H.L., Clark, K.L., Falge, E., Ellsworth, D.S., Goldstein, A.H., Monson, R.K., Hollinger, D., Falk, M., Chen, J., Sparks, J.P.: Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric. For. Meteorol. 113, 185–222 (2002)

    Google Scholar 

  52. Tripathi, J.P.: Almost periodic solution and global attractivity for a density dependent predator-prey system with mutual interference and Crowley-Martin response function. Differ. Equ. Dyn. Syst. (2016). https://doi.org/10.1007/s12591-016-0298-6

    Article  Google Scholar 

  53. Tripathi, J.P., Abbas, S.: Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls. Nonlinear Dyn. 86(1), 337–351 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Tripathi, J.P., Abbas, S., Thakur, M.: Dynamical analysis of a prey–predator model with Beddington–DeAngelis type function response incorporating a prey refuge. Nonlinear Dyn. 80, 177–196 (2015)

    MathSciNet  MATH  Google Scholar 

  55. Tripathi, J.P., Abbas, S., Thakur, M.: A density dependent delayed predator-prey model with Beddington–DeAngelis type function response incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 427–450 (2015)

    MathSciNet  MATH  Google Scholar 

  56. Tripathi, J.P., Tyagi, S., Abbas, S.: Global analysis of a delayed density dependent predator-prey model with Crowley–Martin functional response. Commun. Nonlinear Sci. Numer. Simul. 30, 45–69 (2016)

    MathSciNet  MATH  Google Scholar 

  57. Tripathi, J.P., Meghwani, S.S., Thakur, M., Abbas, S.: A modified Leslie–Gower predator-prey interaction model and parameter identifiability. Commun. Nonlinear. Sci. Numer. Simulat. 54, 331–346 (2018)

    MathSciNet  MATH  Google Scholar 

  58. Viglialoro, G., Woolley, T.E.: Boundedness in a parabolic-elliptic chemotaxis system with nonlinear diffusion and sensitivity and logistic source. Math. Methods Appl. Sci. 41, 1809–1824 (2018)

    MathSciNet  MATH  Google Scholar 

  59. Vrugt, J.A., Robinson, B.A.: Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging. Water Resour. Res. 43, W01411 (2007)

    Google Scholar 

  60. Wang, W., Ichii, K., Hashimoto, H., Michaelis, A.R., Thornton, P.E., Law, B.E., Nemani, R.R.: A hierarchical analysis of terrestrial ecosystem model Biome-BGC: equilibrium analysis and model calibration. Ecol. Model. 220, 2009–2023 (2009)

    Google Scholar 

  61. Yoshizawa, T.: Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, pp. 210–223. Springer, New York (1975)

    MATH  Google Scholar 

Download references

Acknowledgements

The research work of first author (Jai Prakash Tripathi) is supported by Science and Engineering Research Board (SERB), India [File No. ECR/2017/002786] and UGC-BSR Research Start-Up-Grant, India [No. F.30-356/2017(BSR)]. The authors are grateful to the handling editor and reviewers for their helpful comments and suggestions that have improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Abbas.

Ethics declarations

Conflict of interest

The authors of this paper declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, J.P., Jana, D., Vyshnavi Devi, N.S.N.V.K. et al. Intraspecific competition of predator for prey with variable rates in protected areas. Nonlinear Dyn 102, 511–535 (2020). https://doi.org/10.1007/s11071-020-05951-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05951-6

Keywords

Mathematics Subject Classification

Navigation