Skip to main content
Log in

Multilayer neural networks-based control of underwater vehicles with uncertain dynamics and disturbances

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the presence of uncertain dynamic terms and external disturbances, the problem of trajectory tracking with application to an underactuated underwater vehicle is addressed in this paper. Based on Lyapunov theory and properties of neural networks, a nonlinear neural controller is designed, where multilayer neural networks are adopted to approximate the unmodeled dynamic terms and external disturbances. In order to confine the values of estimated weights within predefined bounds, smooth projection functions are employed. Moreover, measurement noises are considered so as to simulate realistic operation scenario, while filters are designed to get cleaner states. From the stability analysis, it is proven that the tracking errors are globally uniformly ultimately bounded. Numerical examples are provided to demonstrate the robustness of the controller in the presence of unmodeled terms, disturbances and measurement noises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wang, Y., Wang, R., Wang, S., Tan, M., Yu, J.: Underwater bio-inspired propulsion: from inspection to manipulation. IEEE Trans. Ind. Electron. 67(9), 7629–7638 (2020)

    Google Scholar 

  2. Wu, Z., Liu, J., Yu, J., Fang, H.: Development of a novel robotic dolphin and its application to water quality monitoring. IEEE/ASME Trans. Mechatron. 22(5), 2130–2140 (2017)

    Google Scholar 

  3. Johnson-Roberson, M., Bryson, M., Friedman, A., Pizarro, O., Troni, G., Ozog, P., Henderson, J.C.: High-resolution underwater robotic vision-based mapping and three-dimensional reconstruction for archaeology. J. Field Robot. 34(4), 625–643 (2017)

    Google Scholar 

  4. Hu, H., Song, S., Chen, C.L.P.: Plume tracing via model-free reinforcement learning method. IEEE Trans. Neural Netw. Learn. Syst. 30(8), 2515–2527 (2019)

    MathSciNet  Google Scholar 

  5. Wang, N., Qian, C., Sun, J., Liu, Y.: Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE Trans. Control Syst. Technol. 24(4), 1454–1462 (2016)

    Google Scholar 

  6. Wang, N., Su, S., Pan, X., Yu, X., Xie, G.: Yaw-guided trajectory tracking control of an asymmetric underactuated surface vehicle. IEEE Trans. Ind. Inform. 15(6), 3502–3513 (2019)

    Google Scholar 

  7. Gao, J., Wu, P., Li, T., Proctor, A.: Optimization-based model reference adaptive control for dynamic positioning of a fully actuated underwater vehicle. Nonlinear Dyn. 87(4), 2611–2623 (2017)

    MATH  Google Scholar 

  8. Krupínski, S., Allibert, G., Hua, M., Hamel, T.: An inertial-aided homography-based visual servo control approach for (almost) fully actuated autonomous underwater vehicles. IEEE Trans. Robot. 33(5), 1041–1060 (2017)

    Google Scholar 

  9. Liu, S., Liu, Y., Liang, X., Wang, N.: Uncertainty observation-based adaptive succinct fuzzy-neuro dynamic surface control for trajectory tracking of fully actuated underwater vehicle system with input saturation. Nonlinear Dyn. 98(3), 1683–1699 (2019)

    MATH  Google Scholar 

  10. Kim, D.W.: Tracking of remus autonomous underwater vehicles with actuator saturations. Autom. (J. IFAC) 58(C), 15–21 (2015)

    MathSciNet  MATH  Google Scholar 

  11. von Ellenrieder, K.D.: Dynamic surface control of trajectory tracking marine vehicles with actuator magnitude and rate limits. Automatica 105, 433–442 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Zheng, Z., Huang, Y., Xie, L., Zhu, B.: Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output. IEEE Trans. Control Syst. Technol. 26(5), 1851–1859 (2018)

    Google Scholar 

  13. Li, Y., Wei, C., Wu, Q., Chen, P., Jiang, Y., Li, Y.: Study of 3 dimension trajectory tracking of underactuated autonomous underwater vehicle. Ocean Eng. 105, 270–274 (2015)

    Google Scholar 

  14. Wu, Z., Karimi, H.R., Shi, P.: Practical trajectory tracking of random lagrange systems. Automatica 105, 314–322 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Liu, Z., Zhang, Y., Yu, X., Yuan, C.: Unmanned surface vehicles: an overview of developments and challenges. Annu. Rev. Control 41, 71–93 (2016)

    Google Scholar 

  16. Martin, S.C., Whitcomb, L.L.: Nonlinear model-based tracking control of underwater vehicles with three degree-of-freedom fully coupled dynamical plant models: theory and experimental evaluation. IEEE Trans. Control Syst. Technol. 26(2), 404–414 (2018)

    Google Scholar 

  17. Li, B., Su, T.C.: Nonlinear heading control of an autonomous underwater vehicle with internal actuators. Ocean Eng. 125, 103–112 (2016)

    Google Scholar 

  18. Shen, C., Shi, Y., Buckham, B.: Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control. IEEE Trans. Ind. Electron. 65(7), 5796–5805 (2018)

    Google Scholar 

  19. Heshmati-Alamdari, S., Karras, G.C., Marantos, P., Kyriakopoulos, K.J.: A robust predictive control approach for underwater robotic vehicles. IEEE Trans. Control Syst. Technol. (2019). https://doi.org/10.1109/TCST.2019.2939248

    Article  Google Scholar 

  20. Makavita, C.D., Jayasinghe, S.G., Nguyen, H.D., Ranmuthugala, D.: Experimental study of command governor adaptive control for unmanned underwater vehicles. IEEE Trans. Control Syst. Technol. 27(1), 332–345 (2019)

    Google Scholar 

  21. Rout, R., Subudhi, B.: Narmax self-tuning controller for line-of-sight-based waypoint tracking for an autonomous underwater vehicle. IEEE Trans. Control Syst. Technol. 25(4), 1529–1536 (2017)

    Google Scholar 

  22. Mahapatra, S., Subudhi, B.: Design of a steering control law for an autonomous underwater vehicle using nonlinear h-infinity state feedback technique. Nonlinear Dyn. 90(2), 837–854 (2017)

    MATH  Google Scholar 

  23. Elmokadem, T., Zribi, M., Youcef-Toumi, K.: Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dyn. 84(2), 1079–1091 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Jeong, S., Chwa, D.: Coupled multiple sliding-mode control for robust trajectory tracking of hovercraft with external disturbances. IEEE Trans. Ind. Electron. 65(5), 4103–4113 (2018)

    Google Scholar 

  25. Gao, J., An, X., Proctor, A., Bradley, C.: Sliding mode adaptive neural network control for hybrid visual servoing of underwater vehicles. Ocean Eng. 142, 666–675 (2017)

    Google Scholar 

  26. Yu, C., Xiang, X., Wilson, P.A., Zhang, Q.: Guidance-error-based robust fuzzy adaptive control for bottom following of a flight-style AUV with saturated actuator dynamics. IEEE Trans. Cybern. 50(5), 1887–1899 (2020)

    Google Scholar 

  27. Paliotta, C., Lefeber, E., Pettersen, K.Y., Pinto, J., Costa, M., de Figueiredo Borges de Sousa, J.T.: Trajectory tracking and path following for underactuated marine vehicles. IEEE Trans. Control Syst. Technol. 27(4), 1423–1437 (2019)

    Google Scholar 

  28. Wang, N., Er, M.J.: Direct adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties. IEEE Trans. Control Syst. Technol. 24(5), 1845–1852 (2016)

    Google Scholar 

  29. Guo, X., Yan, W., Cui, R.: Event-triggered reinforcement learning-based adaptive tracking control for completely unknown continuous-time nonlinear systems. IEEE Trans. Cybern. 1–12 (2019)

  30. Guo, X., Yan, W., Cui, R.: Integral reinforcement learning-based adaptive nn control for continuous-time nonlinear MIMO systems with unknown control directions. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2897221

    Article  Google Scholar 

  31. Cui, R., Yang, C., Li, Y., Sharma, S.: Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning. IEEE Trans. Syst. Man Cybern. Syst. 47(6), 1019–1029 (2017)

    Google Scholar 

  32. Liu, S., Liu, Y., Wang, N.: Nonlinear disturbance observer-based backstepping finite-time sliding mode tracking control of underwater vehicles with system uncertainties and external disturbances. Nonlinear Dyn. 88(1), 465–476 (2017)

    MATH  Google Scholar 

  33. Mu, D., Wang, G., Fan, Y., Qiu, B., Sun, X.: Adaptive course control based on trajectory linearization control for unmanned surface vehicle with unmodeled dynamics and input saturation. Neurocomputing 330, 1–10 (2019)

    Google Scholar 

  34. Bechlioulis, C.P., Karras, G.C., Heshmati-Alamdari, S., Kyriakopoulos, K.J.: Trajectory tracking with prescribed performance for underactuated underwater vehicles under model uncertainties and external disturbances. IEEE Trans. Control Syst. Technol. 25(2), 429–440 (2017)

    Google Scholar 

  35. Yang, X., Yan, J., Hua, C., Guan, X.: Trajectory tracking control of autonomous underwater vehicle with unknown parameters and external disturbances. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2894171

    Article  Google Scholar 

  36. Hamel, T., Samson, C.: Transverse function control of a motorboat. Automatica 65, 132–139 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Park, B.S.: A simple output-feedback control for trajectory tracking of underactuated surface vessels. Ocean Eng. 143, 133–139 (2017)

    Google Scholar 

  38. Peng, Z., Wang, J.: Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks. IEEE Trans. Syst. Man Cybern. Syst. 48(4), 535–544 (2018)

    Google Scholar 

  39. Yuan, C., Licht, S., He, H.: Formation learning control of multiple autonomous underwater vehicles with heterogeneous nonlinear uncertain dynamics. IEEE Trans. Cybern. 48(10), 2920–2934 (2018)

    Google Scholar 

  40. Wang, N., Karimi, H.R., Li, H., Su, S.: Accurate trajectory tracking of disturbed surface vehicles: a finite-time control approach. IEEE/ASME Trans. Mechatron. 24(3), 1064–1074 (2019)

    Google Scholar 

  41. Peng, Z., Wang, J., Wang, D.: Distributed maneuvering of autonomous surface vehicles based on neurodynamic optimization and fuzzy approximation. IEEE Trans. Control Syst. Technol. 26(3), 1083–1090 (2018)

    MathSciNet  Google Scholar 

  42. Ghavidel, H.F., Kalat, A.A.: Robust control for mimo hybrid dynamical system of underwater vehicles by composite adaptive fuzzy estimation of uncertainties. Nonlinear Dyn. 89(4), 2347–2365 (2017)

    MathSciNet  Google Scholar 

  43. Wang, H., Chen, B., Lin, C., Sun, Y., Wang, F.: Adaptive finite-time control for a class of uncertain high-order non-linear systems based on fuzzy approximation. IET Control Theory Appl. 11(5), 677–684 (2017)

    MathSciNet  Google Scholar 

  44. Li, Y., Tong, S., Li, T.: Hybrid fuzzy adaptive output feedback control design for uncertain mimo nonlinear systems with time-varying delays and input saturation. IEEE Trans. Fuzzy Syst. 24(4), 841–853 (2016)

    Google Scholar 

  45. Duan, K., Fong, S., Zhuang, Y., Song, W.: Artificial neural networks in coordinated control of multiple hovercrafts with unmodeled terms. Appl. Sci. 8(6), 862 (2018)

    Google Scholar 

  46. Gao, J., Proctor, A.A., Shi, Y., Bradley, C.: Hierarchical model predictive image-based visual servoing of underwater vehicles with adaptive neural network dynamic control. IEEE Trans. Cybern. 46(10), 2323–2334 (2016)

    Google Scholar 

  47. Shojaei, K.: Neural adaptive robust control of underactuated marine surface vehicles with input saturation. Appl. Ocean Res. 53, 267–278 (2015)

    Google Scholar 

  48. Shojaei, K.: Three-dimensional neural network tracking control of a moving target by underactuated autonomous underwater vehicles. Neural Comput. Appl. 31(2), 509–521 (2019)

    MathSciNet  Google Scholar 

  49. Elhaki, O., Shojaei, K.: Neural network-based target tracking control of underactuated autonomous underwater vehicles with a prescribed performance. Ocean Eng. 167, 239–256 (2018)

    Google Scholar 

  50. Elhaki, O., Shojaei, K.: A robust neural network approximation-based prescribed performance output-feedback controller for autonomous underwater vehicles with actuators saturation. Eng. Appl. Artif. Intell. 88, 103382 (2020)

    Google Scholar 

  51. Wang, H., Liu, K., Li, S.: Command filter based globally stable adaptive neural control for cooperative path following of multiple underactuated autonomous underwater vehicles with partial knowledge of the reference speed. Neurocomputing 275, 1478–1489 (2018)

    Google Scholar 

  52. Lin, C., Wang, H., Yuan, J., Yu, D., Li, C.: An improved recurrent neural network for unmanned underwater vehicle online obstacle avoidance. Ocean Eng. 189, 106327 (2019)

    Google Scholar 

  53. Wang, N., Joo Er, M.: Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances. IEEE Trans. Control Syst. Technol. 23(3), 991–1002 (2015)

    Google Scholar 

  54. Liu, Y.C., Liu, S.Y., Wang, N.: Fully-tuned fuzzy neural network based robust adaptive tracking control of unmanned underwater vehicle with thruster dynamics. Neurocomputing 196, 1–13 (2016)

    Google Scholar 

  55. Belleter, D., Maghenem, M.A., Paliotta, C., Pettersen, K.Y.: Observer based path following for underactuated marine vessels in the presence of ocean currents: a global approach. Automatica 100, 123–134 (2019)

    MathSciNet  MATH  Google Scholar 

  56. Fossen, T.I.: Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles. Marine Cybernetics, Trondheim, Norway (2002)

  57. Lewis, F.L., Yesildirek, A., Liu, Kai: Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 7(2), 388–399 (1996)

    Google Scholar 

  58. Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362–1379 (2007)

    MathSciNet  MATH  Google Scholar 

  59. Tu, L.: An Introduction to Manifolds. Springer, New York (2008)

    MATH  Google Scholar 

  60. Cheng, L., Hou, Z.G., Tan, M.: Adaptive neural network tracking control for manipulators with uncertain kinematics, dynamics and actuator model. Automatica 45(10), 2312–2318 (2009)

    MathSciNet  MATH  Google Scholar 

  61. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Google Scholar 

  62. Guo, B.Z., Zhao, Z.L.: On convergence of tracking differentiator. Int. J. Control 84(4), 693–701 (2011)

    MathSciNet  MATH  Google Scholar 

  63. Karkoub, M., Wu, H.M., Hwang, C.L.: Nonlinear trajectory-tracking control of an autonomous underwater vehicle. Ocean Eng. 145, 188–198 (2017)

    Google Scholar 

Download references

Funding

This study was funded by the following research grants: (1) Nature-Inspired Computing and Metaheuristics Algorithms for Optimizing Data Mining Performance, Grant No. MYRG2016-00069-FST, by the University of Macau; and (2) A Scalable Data Stream Mining Methodology: Stream-based Holistic Analytics and Reasoning in Parallel, Grant No. FDCT/126/2014/A3, by FDCT Macau; and 2018 Guangzhou Science and Technology Innovation and Development of Special Funds, (3) Grant No. EF003/FST-FSJ/2019/GSTIC, and (4) EF004/FST-FSJ/2019/GSTIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kairong Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 1

Rewrite \(\dot{V}_\mathrm{d}\) as

$$\begin{aligned} \dot{V}_\mathrm{d}&\le -\lambda _{1}\mathbf {e}_{1}^{\top }\mathbf {M}^{-1}\mathbf {e}_{1}-\lambda _{2}\mathbf {e}_{2}^{\top }\mathbf {e}_{2}-\lambda _{3}\mathbf {e}_{3}^{\top }\mathbf {e}_{3}\nonumber \\&\quad +\mathbf {e}_{1}^{\top }\varvec{\rho }+\vartheta (||\mathbf {x}_1||)\mathbf {e}_{2}^{\top } \Big (\mathbf {M}\varvec{\epsilon }_{1}(\mathbf {x}_{1})-\mathbf {M}\varvec{\mu }_1\Big )\nonumber \\&\quad +\vartheta (||\mathbf {x}_2||)\mathbf {e}_{3}^{\top }(\varvec{\epsilon }_{2}(\mathbf {x}_{2})-\varvec{\mu }_2)+a \end{aligned}$$
(56)

where \(a=2\varsigma _{n}\) is an arbitrarily small positive constant, and

$$\begin{aligned} \varvec{\mu }_1&=\widetilde{\mathbf {W}}_{1}^{\top }\widehat{\sigma }_1^{'}\mathbf {V}_{1}^{\top }\mathbf {x}_{1} - \mathbf {W}_{1}^{\top } \mathbf {o}(\widetilde{\mathbf {V}}_{1}^{\top }\mathbf {x}_{1})^{2},\\ \varvec{\mu }_2&=\widetilde{\mathbf {W}}_{2}^{\top }\widehat{\sigma }_{2}^{'}\mathbf {V}_{2}^{\top }\mathbf {x}_{2} - \mathbf {W}_{2}^{\top } \mathbf {o}(\widetilde{\mathbf {V}}_{2}^{\top }\mathbf {x}_{2})^{2}, \end{aligned}$$

and

$$\begin{aligned} \mathbf {x}_1&=[1,\,\varvec{\nu }_{1}^{\top }]^{\top }, \\ \mathbf {x}_2&=[1,\,\hat{w}_{11},\,\ldots ,\hat{w}_{43},\,(\partial \sigma (\varvec{\nu }_{1})/\partial \varvec{\nu }_{1})^{\top }, \,\varvec{\nu }_{1}^{\top },\,\varvec{\nu }_{2}^{\top }, \, (\mathbf {J}(\varvec{\eta }_{2})^{\top }\dot{\varvec{\eta }}_\mathrm{d})^{\top }]^{\top }. \end{aligned}$$

It is noted that \(\varvec{\nu }_1\) and \(\varvec{\nu }_2\) can be written as

$$\begin{aligned} \varvec{\nu }_1&=\mathbf {e}_{2}+\mathbf {J}(\varvec{\eta }_{2})^{\top }\dot{\varvec{\eta }}_\mathrm{d}-\lambda _1\mathbf {M}^{-1}\mathbf {e}_{1}+\varvec{\rho }, \\ \varvec{\nu }_2&=\mathbf {e}_3+\mathbf {h}_2{\varvec{\varpi }}_\mathrm{d} \end{aligned}$$

where \({\varvec{\varpi }}_\mathrm{d}\) is defined in (29). Inspired by [57], the following facts are introduced, given as, \(\square \)

Fact 1

For each time t, \(\mathbf {x}_1\) is bounded by

$$\begin{aligned} ||\mathbf {x}_1|| \le (a_0+a_1 \xi _1)+a_2||\mathbf {e}_1||+a_3||\mathbf {e}_2|| \end{aligned}$$

where \(a_{i},\,i=0,\,1,\,2,\,3\), are computable positive constants.

Fact 2

For each time t, \(\mathbf {x}_2\) is bounded by

$$\begin{aligned} ||\mathbf {x}_2|| \le (b_0+b_1\xi _1+b_2\xi _2+b_3W_{\max }+b_4\sigma '_{\max })+b_4||\mathbf {e}_1||+b_5||\mathbf {e}_2||+b_6||\mathbf {e}_3|| \end{aligned}$$

where \(b_{i},\,i=0,\,1,\,\ldots ,\,6\), are computable positive constants.

Fact 3

For radial basis functions activation functions, the higher-order terms \(\mathbf {o}(\widetilde{\mathbf {V}}_{1}^{\top }\mathbf {x}_{1})^{2}\) and \(\mathbf {o}(\widetilde{\mathbf {V}}_{2}^{\top }\mathbf {x}_{2})^{2}\) satisfy the following inequalities:

$$\begin{aligned} \mathbf {o}(\widetilde{\mathbf {V}}_{1}^{\top }\mathbf {x}_{1})^{2}&\le c_{10}+||\widetilde{\mathbf {V}}_{1}||_\mathrm{{F}}(c_{11}+c_{12}||\mathbf {e}_1||+c_{13}||\mathbf {e}_2||) \\ \mathbf {o}(\widetilde{\mathbf {V}}_{2}^{\top }\mathbf {x}_{2})^{2}&\le c_{20}+||\widetilde{\mathbf {V}}_{2}||_\mathrm{{F}}(c_{21}+c_{22}||\mathbf {e}_1||+c_{23}||\mathbf {e}_2||+c_{24}||\mathbf {e}_3||) \end{aligned}$$

where \(c_{1i},\,c_{2j},\,i=0,\,1,\,2,\,3,\,\,j=0,\,1,\ldots ,4\) are computable positive constants.

Fact 4

For \(\varvec{\mu }_1\) and \(\varvec{\mu }_2\), they satisfy

$$\begin{aligned} ||\varvec{\mu }_1||&\le d_{10}+||\widetilde{\mathbf {Z}}_1||_\mathrm{{F}}\Big (d_{11}+d_{12}||\mathbf {e}_1||+d_{13}||\mathbf {e}_2||\Big ) \\ ||\varvec{\mu }_2||&\le d_{20}+||\widetilde{\mathbf {Z}}_2||_\mathrm{{F}}(d_{21}+d_{22}||\mathbf {e}_1||+d_{23}||\mathbf {e}_2||+d_{24}||\mathbf {e}_3||) \end{aligned}$$

where \(d_{1i},\,d_{2j},\,i=0,\,1,\,2,\,3,\,\,j=0,\,1,\ldots ,4\) are computable positive constants, and \(\widetilde{\mathbf {Z}}_1={\mathrm {diag}}(\widetilde{\mathbf {W}}_1,\, \widetilde{\mathbf {V}}_1)\), \(\widetilde{\mathbf {Z}}_2={\mathrm {diag}}(\widetilde{\mathbf {W}}_2,\, \widetilde{\mathbf {V}}_2)\).

Fact 5

As we have assumed \(||\mathbf {W}||_\mathrm{{F}}\le W_{\max }\), \(||\mathbf {V}||_\mathrm{{F}}\le V_{\max }\) and guaranteed \(||\hat{\mathbf {W}}_1||^2_\mathrm{{F}}\le W_{m1}\), \(||\hat{\mathbf {V}}_{1}||^{2}_\mathrm{{F}}\le V_{m1}\), \(||\hat{\mathbf {W}}_2||^2_\mathrm{{F}}\le W_{m2}\), \(||\hat{\mathbf {V}}_{2}||^{2}_\mathrm{{F}}\le V_{m2}\), we thereby get the result that

$$\begin{aligned} ||\widetilde{\mathbf {Z}}_1||_\mathrm{{F}}\le z_{m1},\, ||\widetilde{\mathbf {Z}}_2||_\mathrm{{F}}\le z_{m2} \end{aligned}$$

where \(z_{m1},\,z_{m2}\) are computable positive constants.

Use the following inequalities:

  1. 1.

    \( -\lambda _{1}\mathbf {e}_{1}^{\top }\mathbf {M}^{-1}\mathbf {e}_{1} \le -\lambda _{1}\gamma _{\min }(\mathbf {M}^{-1})||\mathbf {e}_1||^2\)

  2. 2.

    \(\mathbf {e}_{2}^{\top }\mathbf {M}\varvec{\epsilon }_{1}(\mathbf {x}_1)\le \gamma _{\max }(\mathbf {M})\Big ( \dfrac{||\mathbf {e}_2||^2}{2\varepsilon }+\dfrac{\varepsilon \epsilon _{\max }^2}{2}\Big )\)

  3. 3.

    \(\mathbf {e}_{1}^{\top }\varvec{\rho }\le \dfrac{||\mathbf {e}_1||^2}{2\varepsilon }+\dfrac{\varepsilon ||\varvec{\rho }||^2}{2}\), \( \mathbf {e}_3^{\top }\varvec{\epsilon }_{2}(\mathbf {x}_2) \le \dfrac{||\mathbf {e}_3||^2}{2\varepsilon }+\dfrac{\varepsilon \epsilon _{\max }^2}{2}\)

  4. 4.

    \(-\mathbf {e}_2^{\top }\mathbf {M}\varvec{\mu }_1\le \gamma _{\max }(\mathbf {M})\Big ( \dfrac{f_{10}^2}{2\varepsilon }+\dfrac{\varepsilon ||\mathbf {e}_2||^2}{2}+\dfrac{f_{11}||\mathbf {e}_1||^2}{2\varepsilon }+\dfrac{f_{11}\varepsilon ||\mathbf {e}_2||^2}{2}+f_{12}||\mathbf {e}_2||^2\Big )\)

  5. 5.

    \(-\mathbf {e}_3^{\top }\varvec{\mu }_2 \le \dfrac{f_{20}^2}{2\varepsilon }+\dfrac{\varepsilon ||\mathbf {e}_3||^2}{2}+\dfrac{f_{21}||\mathbf {e}_1||^2}{2\varepsilon }+\dfrac{f_{21}\varepsilon ||\mathbf {e}_3||^2}{2}+\dfrac{f_{22}||\mathbf {e}_2||^2}{2\varepsilon }+\dfrac{f_{22}\varepsilon ||\mathbf {e}_3||^2}{2}+f_{23}||\mathbf {e}_3||^2 \)

where \(\gamma _{\min }(\mathbf {M}^{-1})\) and \(\gamma _{\max }(\mathbf {M})\) are minimum and maximum eigenvalues of \(\mathbf {M}^{-1}\) and \(\mathbf {M}\), respectively, \(f_{10},\,f_{11},\, f_{12},\,f_{20},\, f_{21},\, f_{22},\, f_{23}\) are computable positive constants, and \(\varepsilon \) is an arbitrarily small positive constant. Based on these above inequalities, and the facts \(0\le \vartheta (||\mathbf {x}_1||) \le 1,\, 0\le \vartheta (||\mathbf {x}_1||) \le 1\), (56) is rewritten as

$$\begin{aligned} \dot{V}_\mathrm{d}&\le -\bigg (\lambda _{1}\gamma _{\min }(\mathbf {M}^{-1})-\dfrac{1}{2\varepsilon }-\dfrac{\gamma _{\max }(\mathbf {M})f_{11}}{2\varepsilon }-\dfrac{f_{11}}{2\varepsilon }\bigg )||\mathbf {e}_1||^2 \nonumber \\&\qquad -\bigg (\lambda _{2}-\dfrac{\gamma _{\max }(\mathbf {M})}{2\varepsilon }-\dfrac{\gamma _{\max }(\mathbf {M})\varepsilon }{2}\nonumber \\&\qquad -\dfrac{\gamma _{\max }(\mathbf {M})f_{11}\varepsilon }{2}-\gamma _{\max }(\mathbf {M})f_{12} -\dfrac{f_{22}}{2}\bigg )\nonumber \\&\qquad ||\mathbf {e}_2||^2-\bigg (\lambda _{3}-\dfrac{\varepsilon }{2}-\dfrac{f_{21}\varepsilon }{2}-\dfrac{f_{22}\varepsilon }{2}-f_{23}\bigg ) ||\mathbf {e}_3||^2 \\&\qquad +\dfrac{\varepsilon ||\varvec{\rho }||^2}{2} +\dfrac{\gamma _{\max }(\mathbf {M})\epsilon _{\max }^2}{2}+\dfrac{\varepsilon \epsilon _{\max }^2}{2}+\dfrac{\gamma _{\max }(\mathbf {M})}{2\varepsilon }f_{10}^2+\dfrac{f_{20}^2}{2\varepsilon }\nonumber \\&\quad =-\kappa _1\Vert \mathbf {e}_{1} \Vert ^2-\kappa _2\Vert \mathbf {e}_{2}\Vert ^2 -\kappa _3\Vert \mathbf {e}_{3}\Vert ^2+\varsigma , \end{aligned}$$
(57)

with

$$\begin{aligned} \kappa _1&= \lambda _{1}\gamma _{\min }(\mathbf {M}^{-1})-\dfrac{1}{2\varepsilon }-\dfrac{\gamma _{\max }(\mathbf {M})f_{11}}{2\varepsilon }-\dfrac{f_{11}}{2\varepsilon },\\ \kappa _2&= \lambda _{2}-\dfrac{\gamma _{\max }(\mathbf {M})}{2\varepsilon }-\dfrac{\gamma _{\max }(\mathbf {M})\varepsilon }{2}-\dfrac{\gamma _{\max }(\mathbf {M})f_{11}\varepsilon }{2}\\&\quad -\gamma _{\max }(\mathbf {M})f_{12}-\dfrac{f_{22}}{2},\\ \kappa _3&=\lambda _{3}-\dfrac{\varepsilon }{2}-\dfrac{f_{21}\varepsilon }{2}-\dfrac{f_{22}\varepsilon }{2}-f_{23}, \\ \varsigma&=\dfrac{\varepsilon ||\varvec{\rho }||^2}{2}+\dfrac{\gamma _{\max }(\mathbf {M})\epsilon _{\max }^2}{2}+\dfrac{\varepsilon \epsilon _{\max }^2}{2}\\&\quad +\dfrac{\gamma _{\max }(\mathbf {M})}{2\varepsilon }f_{10}^2+\dfrac{f_{20}^2}{2\varepsilon }. \end{aligned}$$

By choosing parameters properly, we can guarantee that \(\kappa _1,\,\kappa _2,\,\kappa _3\) are positive definite. Define \( \mathbf {a}=[\Vert \mathbf {e}_{1}\Vert ,\,\Vert \mathbf {e}_{2}\Vert ,\,\Vert \mathbf {e}_{3}\Vert ]^{\top }\) and \(\kappa _{\min }=\min \{\kappa _{1},\kappa _2,\kappa _3\}\); one further can rewrite (57) as

$$\begin{aligned} \dot{V}_\mathrm{d}\le -\kappa _{\min }\mathbf {a}^{\top }\mathbf {a}+\varsigma \end{aligned}$$
(58)

which is negative definite for \(\Vert \mathbf {a}\Vert > \sqrt{\varsigma /\kappa _{\min }}\) which can be made arbitrarily small by adjusting \(\varsigma \) and \(\kappa _{\min }\). As a result, global uniformly ultimately bounded is achieved.

At last, inspired by [60], we can prove that the estimated weights \(\widehat{\mathbf {W}}_{1},\, \widehat{\mathbf {W}}_{2},\, \widehat{\mathbf {V}}_{1},\, \widehat{\mathbf {V}}_{2}\) are bounded, and the following inequalities are satisfied:

  1. 1.

    \(-\vartheta (||\mathbf {x}_1||)\mathbf {e}_{2}^{\top }\mathbf {M}\widetilde{\mathbf {W}}_{1}^{\top }\big (\widehat{\sigma }_1- \widehat{\sigma }_{1}^{'} \widehat{\mathbf {V}}_{1}^{\top }\mathbf {x}_{1} \big )+{\mathrm {tr}}(\widetilde{\mathbf {W}}_{1}^{\top }\varGamma _{W_1}^{-1}\dot{\widehat{\mathbf {W}}}_{1}) \le 0\)

  2. 2.

    \( -\vartheta (||\mathbf {x}_1||)\mathbf {e}_{2}^{\top }\mathbf {M}\widehat{\mathbf {W}}_{1}^{\top }\widehat{\sigma }_1^{'}\widetilde{\mathbf {V}}_{1}^{\top }\mathbf {x}_{1} +{\mathrm {tr}}(\widetilde{\mathbf {V}}_{1}^{\top }\varGamma _{V_1}^{-1}\dot{\widehat{\mathbf {V}}}_{1}) \le 0\)

  3. 3.

    \(-\vartheta (||\mathbf {x}_2||)\mathbf {e}_{3}^{\top }\widetilde{\mathbf {W}}^{\top }_{2}(\widehat{\sigma }_{2}- \widehat{\sigma }_{2}^{'} \widehat{\mathbf {V}}_{2}^{\top }\mathbf {x}_{2} )+{\mathrm {tr}}(\widetilde{\mathbf {W}}_{2}^{\top }\varGamma _{W_2}^{-1}\dot{\widehat{\mathbf {W}}}_{2}) \le 0\)

  4. 4.

    \( -\vartheta (||\mathbf {x}_2||)\mathbf {e}_{3}^{\top }\widehat{\mathbf {W}}_{2}^{\top }\widehat{\sigma }_{2}^{'}\widetilde{\mathbf {V}}_{2}^{\top }\mathbf {x}_{2}+{\mathrm {tr}}(\widetilde{\mathbf {V}}_{2}^{\top }\varGamma _{V_2}^{-1}\dot{\widehat{\mathbf {V}}}_{2}) \le 0\).

It is noted that due to the above inequalities, the original \(\dot{V}_\mathrm{d}\)

$$\begin{aligned} \dot{V}_\mathrm{d}&\le -\lambda _{1}\mathbf {e}_{1}^{\top }\mathbf {M}^{-1}\mathbf {e}_{1}-\lambda _{2}\mathbf {e}_{2}^{\top }\mathbf {e}_{2}-\lambda _{3}\mathbf {e}_{3}^{\top }\mathbf {e}_{3}+\mathbf {e}_{1}^{\top }\varvec{\rho }+\vartheta (||\mathbf {x}_1||)\mathbf {e}_{2}^{\top }\nonumber \\&\qquad \Big (\mathbf {M}\varvec{\epsilon }_{1}(\mathbf {x}_{1})-\mathbf {M}\varvec{\mu }_1\Big )+\vartheta (||\mathbf {x}_2||)\mathbf {e}_{3}^{\top }(\varvec{\epsilon }_{2}(\mathbf {x}_{2})-\varvec{\mu }_2) +a-\vartheta (||\mathbf {x}_1||)\mathbf {e}_{2}^{\top }\mathbf {M}\widetilde{\mathbf {W}}_{1}^{\top }\big (\widehat{\sigma }_1\nonumber \\&\quad - \widehat{\sigma }_{1}^{'} \widehat{\mathbf {V}}_{1}^{\top }\mathbf {x}_{1} \big )+{\mathrm {tr}}(\widetilde{\mathbf {W}}_{1}^{\top }\varGamma _{W_1}^{-1}\dot{\widehat{\mathbf {W}}}_{1}) -\vartheta (||\mathbf {x}_1||)\mathbf {e}_{2}^{\top }\mathbf {M}\widehat{\mathbf {W}}_{1}^{\top }\widehat{\sigma }_1^{'}\widetilde{\mathbf {V}}_{1}^{\top }\mathbf {x}_{1}\nonumber \\&\quad +{\mathrm {tr}}(\widetilde{\mathbf {V}}_{1}^{\top }\varGamma _{V_1}^{-1}\dot{\widehat{\mathbf {V}}}_{1})-\vartheta (||\mathbf {x}_2||)\mathbf {e}_{3}^{\top }\widetilde{\mathbf {W}}^{\top }_{2}(\widehat{\sigma }_{2}- \widehat{\sigma }_{2}^{'} \widehat{\mathbf {V}}_{2}^{\top }\mathbf {x}_{2} )\nonumber \\&\quad +{\mathrm {tr}}(\widetilde{\mathbf {W}}_{2}^{\top }\varGamma _{W_2}^{-1}\dot{\widehat{\mathbf {W}}}_{2}) -\vartheta (||\mathbf {x}_2||)\mathbf {e}_{3}^{\top }\widehat{\mathbf {W}}_{2}^{\top }\widehat{\sigma }_{2}^{'}\widetilde{\mathbf {V}}_{2}^{\top }\mathbf {x}_{2}+{\mathrm {tr}}(\widetilde{\mathbf {V}}_{2}^{\top }\varGamma _{V_2}^{-1}\dot{\widehat{\mathbf {V}}}_{2}) \end{aligned}$$
(59)

can be rewritten as (56).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, K., Fong, S. & Chen, C.L.P. Multilayer neural networks-based control of underwater vehicles with uncertain dynamics and disturbances. Nonlinear Dyn 100, 3555–3573 (2020). https://doi.org/10.1007/s11071-020-05720-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05720-5

Keywords

Navigation