Skip to main content
Log in

An improved quasi-zero stiffness vibration isolation system utilizing dry friction damping

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 25 June 2020

This article has been updated

Abstract

Quasi-zero stiffness (QZS) isolators, a nonlinear vibration isolation technique, enhance the isolation performance, by lowering the natural frequencies of an isolation system while providing higher static load bearing capacity compared to similarly performing linear isolators. Despite its performance improvement, the challenge of implementing QZS isolation systems is due to their highly nonlinear stiffness characteristics as a result of cubic like behavior of stiffness elements used. Although increasing linear damping in the isolation alleviates the input dependency of the QZS isolation systems by reducing the resonance amplitudes, it results in increased transmissibility in the isolation region, which is an adverse effect. Therefore, in this study, in order to overcome this, dry friction damping is implemented on the QZS isolation system. Hysteresis loop for the new QZS dry friction element is obtained and a mathematical model is introduced. For the nonlinear isolation system, harmonic balance method is used to transform the nonlinear differential equations into a set of nonlinear algebraic equations. For single harmonic motion, analytical expressions of Fourier coefficients are obtained in terms of elliptic integrals. Numerical solution of the resulting set of nonlinear algebraic equations is obtained via Newton’s method with arc-length continuation. Performance of the isolation system under periodic base excitation is studied for different base excitation levels and the stability of the periodic steady-state solutions is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

  • 25 June 2020

    Equation 7 should appear as follows

References

  1. Wang, Y., Li, S., Neild, S.A., Jiang, J.Z.: Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero stiffness. Nonlinear Dyn. 88, 635–654 (2017)

    Article  Google Scholar 

  2. Zhu, H., Yang, J., Zhang, Y., Feng, X., Ma, Z.: Nonlinear dynamic model of air spring with a damper for vehicle ride comfort. Nonlinear Dyn. 89, 1545–1568 (2017)

    Article  Google Scholar 

  3. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314, 371–452 (2008)

    Article  Google Scholar 

  4. Wu, W., Chen, X., Shan, Y.: Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness. J. Sound Vib. 333, 2958–2970 (2014)

    Article  Google Scholar 

  5. Friswell, M.I., Flores, E.I.S., Xia, Y.: Vibration isolation using nonlinear springs. In: Proceedings of International Conference on Noise and Vibration Engineering, pp. 2333–2342 (2012)

  6. Liu, C., Yu, K.: A high-static-low-dynamic-stiffness vibration isolator with the auxiliary system. Nonlinear Dyn. 94, 1549–1567 (2018)

    Article  Google Scholar 

  7. Dong, G., Zhang, Y., Luo, Y., Xie, S., Zhang, X.: Enhanced isolation performance of a high-static-low-dynamic stiffness isolator with geometric nonlinear damping. Nonlinear Dyn. 93, 2339–2356 (2018)

    Article  Google Scholar 

  8. Gatti, G., Brennan, M.J., Tang, B.: Some diverse examples of exploiting the beneficial effects of geometric stiffness nonlinearity. Mech. Syst. Signal Process. 125, 4–20 (2019)

    Article  Google Scholar 

  9. Carrella, A., Brennan, M.J.J., Waters, T.P.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301, 678–689 (2007)

    Article  Google Scholar 

  10. Liu, X., Huang, X., Hua, H.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332, 3359–3376 (2013)

    Article  Google Scholar 

  11. Yan, B., Ma, H., Bin, J., Ke, W., Wu, C.: Nonlinear dynamics analysis of a bi-state nonlinear vibration isolator with symmetric permanent magnets. Nonlinear Dyn. 97, 2499–2519 (2019)

    Article  Google Scholar 

  12. Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound Vib. 346, 53–69 (2015)

    Article  Google Scholar 

  13. Sun, X., Jing, X.: A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band. Mech. Syst. Signal Process. 80, 166–188 (2016)

    Article  Google Scholar 

  14. Donmez, A., Cigeroglu, E., Ozgen, G.O.: The effect of stiffness and loading deviations in a nonlinear isolator having quasi zero stiffness and geometrically nonlinear damping. In: Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, V04BT05A051 (2017)

  15. Jazar, G.N., Houim, R., Narimani, A., Golnaraghi, M.F.: Frequency response and jump avoidance in a nonlinear passive engine mount. J. Vib. Control 12, 1205–1237 (2006)

    Article  Google Scholar 

  16. Tang, B., Brennan, M.J.: A comparison of the effects of nonlinear damping on the free vibration of a single-degree-of-freedom system. J. Vib. Acoust. 134, 024501 (2012)

    Article  Google Scholar 

  17. Jing, X.J., Lang, Z.Q.: Frequency domain analysis of a dimensionless cubic nonlinear damping system subject to harmonic input. Nonlinear Dyn. 58, 469–485 (2009)

    Article  MathSciNet  Google Scholar 

  18. Xiao, Z., Jing, X., Cheng, L.: The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations. J. Sound Vib. 332, 1335–1354 (2013)

    Article  Google Scholar 

  19. Cheng, C., Li, S., Wang, Y., Jiang, X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87, 2267–2279 (2017)

    Article  Google Scholar 

  20. Ferri, A.A.: Friction damping and isolation systems. J. Mech. Des. Trans. ASME 117, 196–206 (1995)

    Article  Google Scholar 

  21. Sanliturk, K.Y., Imregun, M., Ewins, D.J.: Harmonic balance vibration analysis of turbine blades with friction dampers. J. Vib. Acoust. 119, 96–103 (1997)

    Article  Google Scholar 

  22. Srinivasan, A.V., Cutts, D.G.: Dry friction damping mechanisms in engine blades. J. Eng. Gas Turbines Power 105, 332–341 (1983)

    Article  Google Scholar 

  23. Orbay, G., Özgüven, H.N.: Non-linear periodic response analysis of mistuned bladed disk assemblies in modal domain. In: Institution of Mechanical Engineers—9th International Conference on Vibrations in Rotating Machinery, pp. 159–170 (2008)

  24. Ferri, A.A., Dowell, E.H.: Frequency domain solutions to multi-degree-of-freedom, dry friction damped systems. J. Sound Vib. 124, 207–224 (1988)

    Article  MathSciNet  Google Scholar 

  25. Wu, Q., Cole, C., Spiryagin, M., Quan Sun, Y.: A review of dynamics modelling of friction wedge suspensions. Veh. Syst. Dyn. 52, 1389–1415 (2014)

    Article  Google Scholar 

  26. Orlova, A., Romen, Y.: Refining the wedge friction damper of three-piece freight bogies. Veh. Syst. Dyn. 46, 445–455 (2008)

    Article  Google Scholar 

  27. Ciǧeroǧlu, E., Özgüven, H.N.: Nonlinear vibration analysis of bladed disks with dry friction dampers. J. Sound Vib. 295, 1028–1043 (2006)

    Article  Google Scholar 

  28. Von Groll, G., Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241, 223–233 (2001)

    Article  Google Scholar 

  29. Xie, L., Baguet, S., Prabel, B., Dufour, R.: Bifurcation tracking by harmonic balance method for performance tuning of nonlinear dynamical systems. Mech. Syst. Signal Process. 88, 445–461 (2017)

    Article  Google Scholar 

  30. Peletan, L., Baguet, S., Torkhani, M., Jacquet-Richardet, G.: A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics. Nonlinear Dyn. 72, 671–682 (2013)

    Article  MathSciNet  Google Scholar 

  31. Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29, 28–93 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research work was supported by Roketsan A.S and Turkish Undersecretariat for Defence Industries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender Cigeroglu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ f_{\text{ns}} = S_{1} + \frac{{2k_{h} L_{o} }}{\pi X}\left( {\frac{{S_{2} }}{{S_{3} \cos \left( {\psi_{1} } \right)}} - S_{4} E\left[ {\phi ,k} \right] - \frac{{{\mathbf{j}}2aX}}{{S_{4} }}F\left[ {\phi ,k} \right]} \right) $$
$$ f_{\text{nc}} = \frac{{2\mu N\left( { \sin \left( {\psi_{1} } \right) + 1} \right)}}{\pi } $$

where

$$ \begin{aligned} S_{1} & = {{\left( {X\left( {k_{h} + k_{v} } \right)\left( {\cos \psi_{1} + \psi_{1} - \pi /2} \right) - 2\mu N\cos \left( {\psi_{1} } \right)} \right)} \mathord{\left/ {\vphantom {{\left[ {X\left( {k_{h} + k_{v} } \right)\left( {\cos \psi_{1} + \psi_{1} - \pi /2} \right) - 2\mu N\cos \left( {\psi_{1} } \right)} \right]} \pi }} \right. \kern-0pt} \pi }, \\ S_{2} & = 2X^{2} - 6Xw_{0} + 4w_{0}^{2} + \left( {1 - \sin \left( {\psi_{1} } \right)} \right)\left( {a^{2} + w_{0}^{2} } \right) \\ S_{3} & = \sqrt {\left( {X - w_{0} } \right)^{2} + a^{2} } , \\ S_{4} & = \sqrt {\left( {X - ja} \right)^{2} - w0^{2} } \\ \end{aligned} $$

\( \begin{aligned} \phi & = \frac{1}{{\cos \psi_{1} }}\sqrt {\frac{{\left( {X - ja} \right)^{2} - w_{0}^{2} }}{{\left( {X - w_{0} } \right)^{2} + a^{2} }}} \left( {\sin \psi_{1} - 1} \right), \\ k & = \sqrt {\frac{{\left( {X + ja} \right)^{2} - w_{0}^{2} }}{{\left( {X - ja} \right)^{2} - w_{0}^{2} }}} ,\,\,\,\,\,j = \sqrt { - 1} . \\ \end{aligned} \).

Incomplete first and second kind Elliptic integrals are defined as

$$ \begin{aligned} E\left[ {\alpha ,\beta } \right] & = \int\limits_{0}^{\alpha } {\frac{{\sqrt {1 - \beta^{2} t^{2} } }}{{\sqrt {1 - t^{2} } }}{\text{d}}t} \\ F\left[ {\alpha ,\beta } \right] & = \int\limits_{0}^{\alpha } {\frac{1}{{\sqrt {1 - t^{2} } \sqrt {1 - t^{2} \beta^{2} } }}{\text{d}}t} \\ K\left[ k \right] & = \int\limits_{0}^{1} {\frac{1}{{\sqrt {1 - t^{2} } \sqrt {1 - t^{2} k^{2} } }}{\text{d}}t} \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donmez, A., Cigeroglu, E. & Ozgen, G.O. An improved quasi-zero stiffness vibration isolation system utilizing dry friction damping. Nonlinear Dyn 101, 107–121 (2020). https://doi.org/10.1007/s11071-020-05685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05685-5

Keywords

Navigation