Skip to main content
Log in

Clarify the physical process for fractional dynamical systems

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dynamics in fractional order systems has been discussed extensively for presenting a possible guidance in the field of applied mathematics and interdisciplinary science. Within hundreds and thousands of reviews, regular papers and drafts, many fractional differential equations are presented for enjoying mathematical proof without clarifying the scientific background and physical principles. It seems that all nonlinear problems on integer order systems even networks can be confirmed as fractional order systems. This mini-review gives an appropriate clarification on fractional dynamical systems from the physical viewpoint, thereby presenting sufficient evidences for further study on fractional calculus. We argued that non-uniform diffusion, boundary effect and elastic deformation account for the calculation and estimation with fractional order on some physical variables, which can be mapped into dimensionless variables in the dynamical systems. In addition, some similar definitions for energy, wave propagation and diffusion are suggested to find reliable confirmation in the application of fractional calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liu, H., Zhang, Y., Kadir, A., et al.: Image encryption using complex hyperchaotic system by injecting impulse into parameters. Appl. Math. Comput. 360, 83–93 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Silva-García, V.M., Flores-Carapia, R., Rentería-Márquez, C., et al.: Substitution box generation using Chaos: an image encryption application. Appl. Math. Comput. 332, 123–135 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Zhou, L., Tan, F.: A chaotic secure communication scheme based on synchronization of double-layered and multiple complex networks. Nonlinear Dyn. 96, 869–883 (2019)

    Google Scholar 

  4. Hanis, S., Amutha, R.: A fast double-keyed authenticated image encryption scheme using an improved chaotic map and a butterfly-like structure. Nonlinear Dyn. 95, 421–432 (2019)

    Google Scholar 

  5. Li, C., Lin, D., Feng, B., et al.: Cryptanalysis of a chaotic image encryption algorithm based on information entropy. IEEE Access 6, 75834–75842 (2018)

    Google Scholar 

  6. Skinner, J.E.: Low-dimensional chaos in biological systems. Biotechnology 12(6), 596 (1994)

    Google Scholar 

  7. Kadji, H.G.E., Orou, J.B.C., Yamapi, R., et al.: Nonlinear dynamics and strange attractors in the biological system. Chaos Solitons Fractals 32, 862–882 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Schiff, S.J., Jerger, K., Duong, D.H., et al.: Controlling chaos in the brain. Nature 370(6491), 615 (1994)

    Google Scholar 

  9. Wu, F., Zhang, Y., Zhang, X.: Regulating firing rates in a neural circuit by activating memristive synapse with magnetic coupling. Nonlinear Dyn. 98, 971–984 (2019)

    Google Scholar 

  10. Ma, J., Zhang, G., Hayat, T., et al.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95, 1585–1598 (2019)

    Google Scholar 

  11. Fu, X., Yu, Y.: Reliable and efficient processing of sensory information at body temperature by rodent cortical neurons. Nonlinear Dyn. 98, 215–231 (2019)

    Google Scholar 

  12. Wu, F., Ma, J., Zhang, G.: A new neuron model under electromagnetic field. Appl. Math. Comput. 347, 590–599 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Zhang, G., Ma, J., Alsaedi, A., et al.: Dynamical behavior and application in Josephson Junction coupled by memristor. Appl. Math. Comput. 321, 290–299 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Botha, A.E., Shukrinov, Y.M., Kolahchi, M.R.: Onset of chaos in intrinsic Josephson junctions. Chaos Solitons Fractals 48, 32–37 (2013)

    MathSciNet  Google Scholar 

  15. Parastesh, F., Jafari, S., Azarnoush, H.: Traveling patterns in a network of memristor-based oscillators with extreme multistability. Eur. Phys. J. Spec. Top. 228(10), 2123–2131 (2019)

    Google Scholar 

  16. Ma, S., Yao, Z., Zhang, Y., et al.: Phase synchronization and lock between memristive circuits under field coupling. AEU Int. J. Electron. Commun. 105, 177–185 (2019)

    Google Scholar 

  17. Zhang, G., Wu, F., Hayat, T., et al.: Selection of spatial pattern on resonant network of coupled memristor and Josephson junction. Commun. Nonlinear Sci. Numer. Simul. 65, 79–90 (2018)

    MathSciNet  Google Scholar 

  18. Majzoub, S., Elwakil, A.S., Psychalinos, C., et al.: On the mechanism of creating pinched hysteresis loops using a commercial memristor device. AEU Int. J. Electron. Commun. 111, 152923 (2019)

    Google Scholar 

  19. Zhang, X., Wu, F., Ma, J., et al.: Field coupling synchronization between chaotic circuits via a memristor. AEU Int. J. Electron. Commun. 115, 153050 (2020)

    Google Scholar 

  20. Wang, C., Tang, J., Ma, J.: Minireview on signal exchange between nonlinear circuits and neurons via field coupling. Eur. Phys. J. Spec. Top. 228(10), 1907–1924 (2019)

    Google Scholar 

  21. Vijay, S.D., Kingston, S.L., Thamilmaran, K.: Different transitions of bursting and mixed-mode oscillations in Liénard system. AEU Int. J. Electron. Commun. 111, 152898 (2019)

    Google Scholar 

  22. Chen, M., Qi, J., Xu, Q., et al.: Quasi-period, periodic bursting and bifurcations in memristor-based FitzHugh-Nagumo circuit. AEU Int. J. Electron. Commun. 110, 152840 (2019)

    Google Scholar 

  23. Zayer, F., Dghais, W., Benabdeladhim, M., et al.: Low power, ultrafast synaptic plasticity in 1R-ferroelectric tunnel memristive structure for spiking neural networks. AEU Int. J. Electron. Commun. 100, 56–65 (2019)

    Google Scholar 

  24. Tang, J., Zhang, J., Ma, J., et al.: Astrocyte calcium wave induces seizure-like behavior in neuron network. Sci. China Technol. Sci. 60, 1011–1018 (2017)

    Google Scholar 

  25. Pan, X.C., Fan, H.W., Wang, R.B., et al.: Contributions of distinct prefrontal neuron classes in reward processing. Sci. China Technol. Sci. 57, 1257–1268 (2014)

    Google Scholar 

  26. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)

    Google Scholar 

  27. Ma, J., Song, X., Tang, J., et al.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)

    Google Scholar 

  28. Wang, C., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32, 1830003 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Wang, W., Liu, S., Liu, Z.: Spatiotemporal dynamics near the Turing–Hopf bifurcation in a toxic-phytoplankton–zooplankton model with cross-diffusion. Nonlinear Dyn. 98, 27–37 (2019)

    MATH  Google Scholar 

  30. Dong, T., Xu, W., Liao, X.: Hopf bifurcation analysis of reaction–diffusion neural oscillator system with excitatory-to-inhibitory connection and time delay. Nonlinear Dyn. 89, 2329–2345 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Guin, L., Acharya, S.: Dynamic behaviour of a reaction–diffusion predator–prey model with both refuge and harvesting. Nonlinear Dyn. 88, 1501–1533 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, X., Zhao, H.: Dynamics and pattern formation of a diffusive predator–prey model in the presence of toxicity. Nonlinear Dyn. 95, 2163–2179 (2019)

    MATH  Google Scholar 

  33. Sabzalian, M.H., Mohammadzadeh, A., Lin, S., et al.: Robust fuzzy control for fractional-order systems with estimated fraction-order. Nonlinear Dyn. 98, 2375–2385 (2019)

    MATH  Google Scholar 

  34. Cheng, C.C., Hsu, S.C.: Design of adaptive sliding mode controllers for a class of perturbed fractional-order nonlinear systems. Nonlinear Dyn. 98, 1355–1363 (2019)

    Google Scholar 

  35. Fragkoulis, V.C., Kougioumtzoglou, I.A., Pantelous, A.A., et al.: Non-stationary response statistics of nonlinear oscillators with fractional derivative elements under evolutionary stochastic excitation. Nonlinear Dyn. 97, 2291–2303 (2019)

    MATH  Google Scholar 

  36. Korpinar, Z., Inc, M., Bayram, M.: Theory and application for the system of fractional Burger equations with Mittag leffler kernel. Appl. Math. Comput. 367, 124781 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Haq, S., Ghafoor, A., Hussain, M.: Numerical solutions of variable order time fractional (1 + 1)-and (1 + 2)-dimensional advection dispersion and diffusion models. Appl. Math. Comput. 360, 107–121 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Wu, G.C., Baleanu, D., Luo, W.H.: Lyapunov functions for Riemann–Liouville-like fractional difference equations. Appl. Math. Comput. 314, 228–236 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Huang, X., Zhao, Z., Wang, Z., et al.: Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94, 13–21 (2012)

    Google Scholar 

  40. Xu, C., Liao, M., Li, P., et al.: Influence of multiple time delays on bifurcation of fractional-order neural networks. Appl. Math. Comput. 361, 565–582 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Wu, G.C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75, 283–287 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Wu, G.C., Baleanu, D.: Discrete chaos in fractional delayed logistic maps. Nonlinear Dyn. 80, 1697–1703 (2015)

    MathSciNet  Google Scholar 

  43. Ma, J., Yang, Z., Yang, L., et al.: A physical view of computational neurodynamics. J. Zhejiang Univ.-Sci. A 20(9), 639–659 (2019)

    Google Scholar 

  44. Dalir, M., Bashour, M.: Applications of fractional calculus. Appl. Math. Sci. 4(21), 1021–1032 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187, 777–784 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Lovoie, J.L., Osler, T.J., Tremblay, R.: Fractional derivatives and special functions. SIAM Rev. 18, 240–268 (1976)

    MathSciNet  MATH  Google Scholar 

  47. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 13, 529–539 (1967)

    Google Scholar 

  48. Ortigueira, M.D., Rodríguez-Germá, L., Trujillo, J.J.: Complex Grünwald–Letnikov, Liouville, Riemann–Liouville, and Caputo derivatives for analytic functions. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4174–4182 (2011)

    MathSciNet  MATH  Google Scholar 

  49. Garrappa, R.: Grünwald–Letnikov operators for fractional relaxation in Havriliak–Negami models. Commun. Nonlinear Sci. Numer. Simul. 38, 178–191 (2016)

    MathSciNet  Google Scholar 

  50. Tarasov, V.E.: Caputo–Fabrizio operator in terms of integer derivatives: memory or distributed lag? Comput. Appl. Math. 38(3), 113 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Ortigueira, M.D., Martynyuk, V., Fedula, M., et al.: The failure of certain fractional calculus operators in two physical models. Fract. Calc. Appl. Anal. 22(2), 255–270 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Ortigueira, M., Machado, J.: Which derivative? Fractal Fract. 1(1), 3 (2017)

    Google Scholar 

  53. Tarasov, V.E.: No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 62, 157–163 (2018)

    MathSciNet  Google Scholar 

  54. Gu, C.Y., Zhang, J., Wu, G.C.: Positive solutions of fractional differential equations with the Riesz space derivative. Appl. Math. Lett. 95, 59–64 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Wu, G.C., Baleanu, D., Zeng, S.D.: Finite-time stability of discrete fractional delay systems: gronwall inequality and stability criterion. Commun. Nonlinear Sci. Numer. Simul. 57, 299–308 (2018)

    MathSciNet  Google Scholar 

  56. Du, M., Wang, Z., Hu, H.: Measuring memory with the order of fractional derivative. Sci. Rep. 3, 3431 (2013)

    Google Scholar 

  57. Karci, A.: The physical and geometrical interpretation of fractional order derivatives. Univers. J. Eng. Sci. 3, 53–63 (2015)

    Google Scholar 

  58. Ortigueira, M.D., Machado, J.A.T.: What is a fractional derivative? J. Comput. Phys. 293, 4–13 (2015)

    MathSciNet  MATH  Google Scholar 

  59. Falcini, F., Garra, R., Voller, V.: Modeling anomalous heat diffusion: comparing fractional derivative and non-linear diffusivity treatments. Int. J. Therm. Sci. 137, 584–588 (2019)

    Google Scholar 

  60. Sabatier, J., Merveillaut, M., Malti, R., et al.: How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numer. Simul. 15, 1318–1326 (2010)

    MathSciNet  MATH  Google Scholar 

  61. Giannantoni, C.: The problem of the initial conditions and their physical meaning in linear differential equations of fractional order. Appl. Math. Comput. 141, 87–102 (2003)

    MathSciNet  MATH  Google Scholar 

  62. Moshrefi-Torbati, M., Hammond, J.K.: Physical and geometrical interpretation of fractional operators. J. Frankl. Inst. 335, 1077–1086 (1998)

    MathSciNet  MATH  Google Scholar 

  63. Adolfsson, K., Enelund, M., Olsson, P.: On the fractional order model of viscoelasticity. Mech. Time Depend. Mater. 9, 15–34 (2005)

    Google Scholar 

  64. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 45, 765–771 (2006)

    Google Scholar 

  65. Tavassoli, M.H., Tavassoli, A., Rahimi, M.R.O.: The geometric and physical interpretation of fractional order derivatives of polynomial functions. Differ. Geom. Dyn. Syst. 15, 93–104 (2013)

    MathSciNet  MATH  Google Scholar 

  66. Nadal, E., Abisset-Chavanne, E., Cueto, E., et al.: On the physical interpretation of fractional diffusion. Comptes Rendus Mécanique 346, 581–589 (2018)

    Google Scholar 

  67. Ozaktas, H.M., Mendlovic, D.: Fourier transforms of fractional order and their optical interpretation. Opt. Commun. 101(3–4), 163–169 (1993)

    Google Scholar 

  68. Machado, J.A.T.: Calculation of fractional derivatives of noisy data with genetic algorithms. Nonlinear Dyn. 57, 253–260 (2009)

    MATH  Google Scholar 

  69. Demirci, E., Ozalp, N.: A method for solving differential equations of fractional order. J. Comput. Appl. Math. 236, 2754–2762 (2012)

    MathSciNet  MATH  Google Scholar 

  70. Voronel, A., Veliyulin, E., Machavariani, V.S., et al.: Fractional Stokes–Einstein law for ionic transport in liquids. Phys. Rev. Lett. 80, 2630 (1998)

    Google Scholar 

  71. Průša, V.: Revisiting Stokes first and second problems for fluids with pressure-dependent viscosities. Int. J. Eng. Sci. 48(12), 2054–2065 (2010)

    MathSciNet  Google Scholar 

  72. Adams, M.: The Bernoulli principle and smoke control. Vernac. Architect. 36, 61–65 (2005)

    Google Scholar 

  73. Faulkner, B.E., Ytreberg, F.M.: Understanding Bernoulli’s principle through simulations. Am. J. Phys. 79, 214–216 (2011)

    Google Scholar 

  74. Pham, V.T., Volos, C., Jafari, S., et al.: Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectron. Adv. Mater. Rapid Commun. 8(11–12), 1157–1163 (2014)

    Google Scholar 

  75. Pham, V.T., Jafari, S., Vaidyanathan, S., et al.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59, 358–363 (2016)

    Google Scholar 

  76. Bao, B., Qian, H., Xu, Q., et al.: Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Front. Comput. Neurosci. 11, 81 (2017)

    Google Scholar 

  77. Liu, Z., Ma, J., Zhang, G., et al.: Synchronization control between two Chua′s circuits via capacitive coupling. Appl. Math. Comput. 360, 94–106 (2019)

    MathSciNet  MATH  Google Scholar 

  78. Liu, Z., Wang, C., Jin, W., et al.: Capacitor coupling induces synchronization between neural circuits. Nonlinear Dyn. 97, 2661–2673 (2019)

    MATH  Google Scholar 

  79. Xu, Y., Yao, Z., Hobiny, A., et al.: Differential coupling contributes to synchronization via a capacitor connection between chaotic circuits. Front. Inf. Technol. Electron. Eng. 20, 571–583 (2019)

    Google Scholar 

  80. Yao, Z., Ma, J., Yao, Y., et al.: Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonlinear Dyn. 96, 205–217 (2019)

    Google Scholar 

  81. Zhu, S., Zhou, P., Ma, J.: Field coupling-induced synchronization via a capacitor and inductor. Chin. J. Phys. 62, 9–25 (2019)

    MathSciNet  Google Scholar 

  82. Liu, Z., Wang, C., Zhang, G., et al.: Synchronization between neural circuits connected by hybrid synapse. Int. J. Mod. Phys. B 33, 1950170 (2019)

    MathSciNet  MATH  Google Scholar 

  83. Riesz, M.: L’intégrale de Riemann–Liouville et le problème de Cauchy. Acta Math. 81, 1–222 (1949)

    MathSciNet  MATH  Google Scholar 

  84. Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20(1), 7–51 (2017)

    MathSciNet  MATH  Google Scholar 

  85. Vázquez, J.L.: The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion. Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, pp. 205–278. Springer, Cham (2017)

    Google Scholar 

  86. Abdelouahab, M.S., Lozi, R., Chen, G.: Complex canard explosion in a fractional-order FitzHugh–Nagumo model. Int. J. Bifurc. Chaos 29, 1950111 (2019)

    MathSciNet  MATH  Google Scholar 

  87. Khanday, F.A., Kant, N.A., Dar, M.R., et al.: Low-voltage low-power integrable CMOS circuit implementation of integer-and fractional-order FitzHugh–Nagumo neuron model. IEEE Trans. Neural Netw. Learn. Syst. 30(7), 2108–2122 (2019)

    MathSciNet  Google Scholar 

  88. Tolba, M.F., Elsafty, A.H., Armanyos, M., et al.: Synchronization and FPGA realization of fractional-order Izhikevich neuron model. Microelectron. J. 89, 56–69 (2019)

    Google Scholar 

  89. Lin, J., Xu, R., Li, L.: Effect of leakage delay on Hopf bifurcation in a fractional BAM neural network. Int. J. Bifurc. Chaos 29, 1950077 (2019)

    MathSciNet  MATH  Google Scholar 

  90. Doungmo Goufo, E.F., Tabi, C.B.: On the chaotic pole of attraction for Hindmarsh–Rose neuron dynamics with external current input. Chaos 29, 023104 (2019)

    MathSciNet  MATH  Google Scholar 

  91. Chen, S., Zou, Y., Zhang, X.: An efficient method for Hopf bifurcation control in fractional-order neuron model. IEEE Access 7, 77490–77498 (2019)

    Google Scholar 

  92. Lundstrom, B.N., Higgs, M.H., Spain, W.J.F., et al.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11(11), 1335 (2008)

    Google Scholar 

  93. Tabi, C.B.: Dynamical analysis of the FitzHugh–Nagumo oscillations through a modified Van der Pol equation with fractional-order derivative term. Int. J. Nonlinear Mech. 105, 173–178 (2018)

    Google Scholar 

  94. Hernández-Balaguera, E., Vara, H., Polo, J.L.: Identification of capacitance distribution in neuronal membranes from a fractional-order electrical circuit and whole-cell patch-clamped cells. J. Electrochem. Soc. 165(12), G3104–G3111 (2018)

    Google Scholar 

  95. Teka, W.W., Upadhyay, R.K., Mondal, A.: Spiking and bursting patterns of fractional-order Izhikevich model. Commun. Nonlinear Sci. Numer. Simul. 56, 161–176 (2018)

    MathSciNet  Google Scholar 

  96. Mondal, A., Upadhyay, R.K.: Diverse neuronal responses of a fractional-order Izhikevich model: journey from chattering to fast spiking. Nonlinear Dyn. 91, 1275–1288 (2018)

    Google Scholar 

  97. Duarte Ortigueira, M., Tenreiro, Machado J.: Fractional derivatives: the perspective of system theory. Mathematics 7(2), 150 (2019)

    Google Scholar 

  98. Teodoro, G.S., Machado, J.A.T., De Oliveira, E.C.: A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 388, 195–208 (2019)

    MathSciNet  Google Scholar 

  99. Tenreiro Machado, J.A. (ed.): Handbook of Fractional Calculus with Applications, vol. 1–8. De Gruyter, Berlin (2019)

    MATH  Google Scholar 

  100. Petras, I.: Fractional-order memristor-based Chua’s circuit. IEEE Trans. Circ. Syst. II Express Briefs 57(12), 975–979 (2010)

    Google Scholar 

  101. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    MathSciNet  MATH  Google Scholar 

  102. Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  103. Atici, F., Eloe, P.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137(3), 981–989 (2009)

    MathSciNet  MATH  Google Scholar 

  104. Mozyrska, D., Girejko, E.: Overview of Fractional h-Difference Operators. Advances in Harmonic Analysis and Operator Theory, pp. 253–268. Birkhäuser, Basel (2013)

    MATH  Google Scholar 

  105. Wu, G.C., Deng, Z.G., Baleanu, D., et al.: New variable-order fractional chaotic systems for fast image encryption. Chaos 29, 083103 (2019)

    MathSciNet  MATH  Google Scholar 

  106. Machado, J.A., Lopes, A.M.: Relative fractional dynamics of stock markets. Nonlinear Dyn. 86, 1613–1619 (2016)

    MathSciNet  Google Scholar 

  107. Machado, J.A.: Fractional generalization of memristor and higher order elements. Commun. Nonlinear Sci. Numer. Simul. 18, 264–275 (2013)

    MathSciNet  MATH  Google Scholar 

  108. Machado, J.A., Lopes, A.M.: Multidimensional scaling locus of memristor and fractional order elements. J. Adv. Res. (2020). https://doi.org/10.1016/j.jare.2020.01.004

    Article  Google Scholar 

Download references

Acknowledgements

We would like to give thanks to Dr. Ying Xu and Zhu Zhigang for their editing with the sketches (1, 2), respectively. Dr. Wu Guo-Cheng presented helpful suggestion for preparing a better version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Ma, J. & Tang, J. Clarify the physical process for fractional dynamical systems. Nonlinear Dyn 100, 2353–2364 (2020). https://doi.org/10.1007/s11071-020-05637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05637-z

Keywords

Navigation