Skip to main content
Log in

Snakelike similaritons in combined harmonic-lattice potentials with a varying source

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the dynamics of snakelike similaritons to the nonlinear Schrödinger equation in combined harmonic-lattice potentials with a varying source term. Using the self-similar and Möbius transformations, we construct a large number of analytical solutions which generate many types of novel snakelike similaritons under some constraint conditions, such as the W- and bell-shaped breathing similaritons and the elliptic function solutions. Then, four specific examples of physical interest are considered in details to show the dynamical behaviors of the similaritons. Especially, the compression effect of snakelike similaritons is demonstrated in dispersion-decreasing media with Bessel modulated nonlinearity. We find that the structures of snakelike similaritons can be controlled by tuning the coefficient parameters, the combined harmonic-lattice potentials, and the source term. The stability of the solutions has also been performed by numerical simulations. Our results may have potential applications in the dual-core fiber waveguides and Bose–Einstein condensates in the presence of an inhomogeneous source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502 (2000)

    Google Scholar 

  2. Wu, L., Zhang, J.F., Finot, C., Li, L.: Propagation of dark similaritons on the compact parabolic background in dispersion-managed optical fibers. Opt. Express 17, 8278–8286 (2009)

    Google Scholar 

  3. Xu, S., Petrovi, N.Z., Belić, M.R., Deng, W.: Exact solutions for the quintic nonlinear Schrödinger equation with time and space. Nonlinear Dyn. 84, 251–259 (2016)

    Google Scholar 

  4. Ozeki, Y., Inoue, T.: Stationary rescaled pulse in dispersion-decreasing fiber for pedestal-free pulse compression. Opt. Lett. 31, 1606–1608 (2006)

    Google Scholar 

  5. Dai, C.Q., Wang, Y., Yan, C.: Chirped and chirp-free self-similar cnoidal and solitary wave solutions of the cubic-quintic nonlinear Schrödinger equation with distributed coefficients. Opt. Commun. 283, 1489–1494 (2010)

    Google Scholar 

  6. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Hidden symmetry reductions and the Ablowitz–Kaup–Newell–Segur hierarchies for nonautonomous solitons. In: Porsezian, K., Ganapathy, R. (eds.) Odyssey of Light in Nonlinear Optical Fibers: Theory and Applications, pp. 145–187. CRC Press, Taylor Francis, Boca Raton (2015)

    Google Scholar 

  7. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (1995)

    MATH  Google Scholar 

  8. Chen, Y.X., Xu, F.Q., Hu, Y.L.: Excitation control for three-dimensional Peregrine solution and combined breather of a partially nonlocal variable-coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 95, 1957–1964 (2019)

    Google Scholar 

  9. Wu, H.Y., Jiang, L.H.: Excitation management of (2+1)-dimensional breathers for a coupled partially nonlocal nonlinear Schrödinger equation with variable coefficients. Nonlinear Dyn. 95, 3401–3409 (2019)

    Google Scholar 

  10. Yang, C., Liu, W., Zhou, Q., Mihalache, D., Malomed, B.A.: One-soliton shaping and two-soliton interaction in the fifth-order variable-coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 95, 369–380 (2019)

    Google Scholar 

  11. Ponomarenko, S.A., Agrawal, G.P.: Do solitonlike self-similar waves exist in nonlinear optical media? Phys. Rev. Lett. 97, 013901 (2006)

    Google Scholar 

  12. Serkin, V.N., Chapela, V.M., Percino, J., Belyaeva, T.L.: Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides. Opt. Commun. 192, 237–244 (2001)

    Google Scholar 

  13. Malomed, B.A., Skinner, I.M., Chu, P.L., Peng, G.D.: Symmetric and asymmetric solitons in twin-core nonlinear optical fibers. Phys. Rev. E 53, 4084 (1996)

    Google Scholar 

  14. Li, L., Zhao, X., Xu, Z.: Dark solitons on an intense parabolic background in nonlinear waveguides. Phys. Rev. A 78, 063833 (2008)

    Google Scholar 

  15. Zhao, X., Li, L., Xu, Z.: Dark-soliton stripes on a paraboloidal background in a bulk nonlinear medium. Phys. Rev. A 79, 043827 (2009)

    Google Scholar 

  16. Wu, L., Zhang, J.F., Li, L., Tian, Q., Porsezian, K.: Similaritons in nonlinear optical systems. Opt. Express 16, 6352–6360 (2008)

    Google Scholar 

  17. Xu, S., Petrović, N.Z., Belić, M.R., Hu, Z.L.: Light bullet supported by parity-time symmetric potential with power-law nonlinearity. Nonlinear Dyn. 84, 1877–1882 (2016)

    MathSciNet  Google Scholar 

  18. Malomed, B.A., Mihalache, D.: Nonlinear waves in optical and matter-wave media: a topical survey of recent theoretical and experimental results. Rom. J. Phys. 64, 106 (2019)

    Google Scholar 

  19. Xu, S., Petrović, N., Belić, M.R.: Exact solutions of the (2+1)-dimensional quintic nonlinear Schrödinger equation with variable coefficients. Nonlinear Dyn. 80, 583–589 (2015)

    Google Scholar 

  20. Xu, S., Xue, L., Belić, M.R., He, J.R.: Spatiotemporal soliton clusters in strongly nonlocal media with variable potential coefficients. Nonlinear Dyn. 87, 827–834 (2017)

    MathSciNet  Google Scholar 

  21. Dai, C.Q., Zhang, J.F.: Controllable dynamical behaviors for spatiotemporal bright solitons on continuous wave background. Nonlinear Dyn. 73, 2049–2057 (2013)

    MathSciNet  Google Scholar 

  22. Mani Rajan, M.S.: Dynamics of optical soliton in a tapered erbium-doped fiber under periodic distributed amplification system. Nonlinear Dyn. 85, 599–606 (2016)

    Google Scholar 

  23. Subramanian, K., Alagesan, T., Mahalingam, A., Mani Rajan, M.S.: Propagation properties of optical soliton in an erbium-doped tapered parabolic index nonlinear fiber: soliton control. Nonlinear Dyn. 87, 1575–1587 (2017)

    Google Scholar 

  24. Yang, Z.Y., Zhao, L.C., Zhang, T., Li, Y.H., Yue, R.H.: Snakelike nonautonomous solitons in a graded-index grating waveguide. Phys. Rev. A 81, 043826 (2010)

    Google Scholar 

  25. Dai, C.Q., Zhu, H.P.: Superposed Kuznetsov–Ma solitons in a two-dimensional graded-index grating waveguide. J. Opt. Soc. Am. B 30, 3291–3297 (2013)

    Google Scholar 

  26. Kruglov, V.I., Peacock, A.C., Harvey, J.D.: Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. Lett. 90, 113902 (2003)

    Google Scholar 

  27. Chernikov, S.V., Richardson, D.J., Dianov, E.M., Payn, D.N.: Soliton pulse compression in dispersion-decreasing fiber. Opt. Lett. 18, 476–478 (1993)

    Google Scholar 

  28. Moores, J.D.: Nonlinear compression of chirped solitary waves with and without phase modulation. Opt. Lett. 21, 555–557 (1996)

    Google Scholar 

  29. Biswas, A., Milovic, D.: Mathematical Theory of Dispersion-Managed Optical Solitons. Springer, Berlin (2010)

    MATH  Google Scholar 

  30. Serkin, V.N., Hasegawa, A.: Exactly integrable nonlinear Schrödinger equation models with varying dispersion, nonlinearity and gain: application for soliton dispersion and nonlinear management. IEEE J. Select. Top. Quant. Electron. 8, 418–431 (2002)

    Google Scholar 

  31. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Google Scholar 

  32. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Solitary waves in nonautonomous nonlinear and dispersive systems: nonautonomous solitons. J. Mod. Opt. 57, 456–1472 (2010)

    MATH  Google Scholar 

  33. Yang, Q., Zhang, J.F.: Bose-Einstein solitons in time-dependent linear potential. Opt. Commun. 258, 35–42 (2006)

    Google Scholar 

  34. Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Konotop, V.V.: Localized nonlinear waves in systems with time-and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)

    Google Scholar 

  35. Anderson, B.P., Kasevich, M.A.: Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686 (1998)

    Google Scholar 

  36. Bronski, J.C., Carr, L.D., Deconinck, B., Kutz, J.N.: Bose–Einstein condensates in standing waves: the cubic nonlinear Schrödinger equation with a periodic potential. Phys. Rev. Lett. 86, 1402 (2001)

    Google Scholar 

  37. Morsch, O., Oberthaler, M.: Dynamics of Bose–Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179 (2006)

    Google Scholar 

  38. Blakie, P.B., Bezett, A., Buonsante, P.: Degenerate Fermi gas in a combined harmonic-lattice potential. Phys. Rev. A 75, 063609 (2007)

    Google Scholar 

  39. Hassan, A.S.: Critical points of a quasi two-dimensional harmonically trapped Bose gas. Physica B 405, 1040–1044 (2010)

    Google Scholar 

  40. Liu, M., Shum, P.: Generalized coupled nonlinear equations for the analysis of asymmetric two-core fiber coupler. Opt. Express 11, 116–119 (2003)

    Google Scholar 

  41. Raju, T.S., Panigrahi, P.K., Porsezian, K.: Nonlinear compression of solitary waves in asymmetric twin-core fibers. Phys. Rev. E 71, 026608 (2005)

    Google Scholar 

  42. Raju, T.S., Panigrahi, P.K.: Self-similar propagation in a graded-index nonlinear-fiber amplifier with an external source. Phys. Rev. A 81, 043820 (2010)

    Google Scholar 

  43. He, J.R., Yi, L.: Exact optical self-similar solutions in a tapered graded-index nonlinear-fiber amplifier with an external source. Opt. Commun. 320, 129–137 (2014)

    Google Scholar 

  44. Raju, T.S.: Dynamics of self-similar waves in asymmetric twin-core fibers with Airy–Bessel modulated nonlinearity. Opt. Commun. 346, 74–79 (2015)

    Google Scholar 

  45. Yang, Y., Yan, Z., Mihalache, D.: Controlling temporal solitary waves in the generalized inhomogeneous coupled nonlinear Schrödinger equations with varying source terms. J. Math. Phys. 56, 053508 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Yan, Z., Zhang, X.F., Liu, W.M.: Nonautonomous matter waves in a waveguide. Phys. Rev. A 84, 023627 (2011)

    Google Scholar 

  47. Raju, T.S.: Spatiotemporal optical similaritons in dual-core waveguide with an external source. Commun. Nonlinear. Sci. Numer. Simulat. 45, 75–80 (2017)

    MathSciNet  Google Scholar 

  48. Bhat, N.A.R., Sipe, J.E.: Optical pulse propagation in nonlinear photonic crystals. Phys. Rev. E 64, 056604 (2001)

    Google Scholar 

  49. He, J.R., Xu, S., Xue, L.: Snakelike similaritons in tapered grating dual-core waveguide amplifiers. Phys. Scr. 94, 105216 (2019)

    Google Scholar 

  50. Eiermann, B., Treutlein, P., Anker, T., Albiez, M., Taglieber, M., Marzlin, K.P., Oberthaler, M.K.: Dispersion management for atomic matter waves. Phys. Rev. Lett. 91, 060402 (2003)

    Google Scholar 

  51. Kartashov, Y.V., Konotop, V.V., Abdullaev, FKh: Gap solitons in a spin-orbit-coupled Bose–Einstein condensate. Phys. Rev. Lett. 111, 060402 (2013)

    Google Scholar 

  52. Paul, T., Richter, K., Schlagheck, P.: Nonlinear resonant transport of Bose–Einstein condensates. Phys. Rev. Lett. 94, 020404 (2005)

    Google Scholar 

  53. Raju, T.S., Kumar, C.N., Panigrahi, P.K.: On exact solitary wave solutions of the nonlinear Schrödinger equation with a source. J. Phys. A Math. Gen. 38, L271 (2005)

    MATH  Google Scholar 

  54. Malomed, B.A.: Soliton Management in Periodic Systems. Springer, New York (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 11847103 and the Field Grade Project of HuBei University of Science and Technology under Grant No. 2016-19XB006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Rong He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, JR., Deng, WW. & Xue, L. Snakelike similaritons in combined harmonic-lattice potentials with a varying source. Nonlinear Dyn 100, 1599–1609 (2020). https://doi.org/10.1007/s11071-020-05584-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05584-9

Keywords

Navigation