Skip to main content
Log in

Dispersal-induced pattern-forming instabilities in host–parasitoid metapopulations

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dispersal-induced pattern formation is important from both fundamental and application points of view. Spatial pattern in an ecological system can strongly depend on exogenous factors like arrangement of the natural and artificial physical features of the habitat (topography) and distribution of resources. It is also influenced by endogenous factors (intrinsic biological forces) such as the ecological interactions of individuals. Here, we consider a discrete space–time host–parasitoid metapopulation model in the presence of both self-diffusion (due to endogenous factors) and cross-diffusion (due to exogenous factors). Dynamics of a metapopulation system consists of a dispersal stage and a reaction stage. In the dispersal stage, populations from an individual site can disperse to the nearest neighboring sites via dispersal and may cause variation in the host and parasitoid biomass of the node. In the reaction stage, hosts and parasitoids interact in each site and their local interaction is governed by the modified Nicholson–Bailey-type interaction. The conditions for the existence of pattern-forming instabilities (like Turing, Hopf and Hopf–Turing) in the reaction–diffusion discrete metapopulation model have been determined analytically, and the patterns have been visualized numerically. A wide range of complex spatiotemporal patterns (like periodic, quasi-periodic, chaotic) is observed with respect to the variation of diffusion coefficients and other local interacting parameters of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Lafferty, K.D.: Biodiversity loss decreases parasite diversity: theory and patterns. Philos. Trans. R. Soc. B 367(1604), 2814–2827 (2012)

    Google Scholar 

  2. Daszak, P., Cunningham, A.A., Hyatt, A.D.: Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science 287(5452), 443–449 (2000)

    Google Scholar 

  3. Meier, C.M., Bonte, D., Kaitala, A., Ovaskainen, O.: Invasion rate of deer ked depends on spatiotemporal variation in host density. Bull. Entomol. Res. 104(3), 314–322 (2014)

    Google Scholar 

  4. Turing, A.M.: On the chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237, 37–72 (1952)

    MathSciNet  MATH  Google Scholar 

  5. Nicolis, G., Prigogine, I.: Self-organization in Nonequilibrium Systems. Wiley, New York (1977)

    MATH  Google Scholar 

  6. Winfree, A.T.: Spiral waves of chemical activity. Science 175(4022), 634–636 (1972)

    Google Scholar 

  7. Castets, V., Dulos, E., Boissonade, J., Kepper, P.D.: Experimental evidence of a sustained standing Turing-type non-equilibrium chemical pattern. Phys. Rev. Lett. 64(24), 2953 (1990)

    Google Scholar 

  8. Waddington, C.H., Perry, M.M.: The ultrastructure of the developing urodele notochord. Proc. R. Soc. B 156(965), 459–482 (1962)

    Google Scholar 

  9. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12(1), 30–39 (1972)

    MATH  Google Scholar 

  10. Rogers, K.W., Schier, A.F.: Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol. 27, 377–407 (2011)

    Google Scholar 

  11. Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.L.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44(3), 311–370 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Ghorai, S., Poria, S.: Turing patterns induced by cross-diffusion in a predator–prey system in presence of habitat complexity. Chaos Soliton Fractals 91, 421–429 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Ghorai, S., Poria, S.: Pattern formation in a system involving prey–predation, competition and commensalism. Nonlinear Dyn. 89(2), 1309–1326 (2017)

    Google Scholar 

  14. Sun, G.: Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 85, 1–12 (2016)

    MathSciNet  Google Scholar 

  15. Ma, J., Xu, Y., Ren, G., Wang, C.: Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dyn. 84(2), 497–509 (2016)

    MathSciNet  Google Scholar 

  16. Xu, Y., Jin, W., Ma, J.: Emergence and robustness of target waves in a neuronal network. Int. J. Mod. Phys. B 29(23), 1550164 (2015)

    MATH  Google Scholar 

  17. Song, X., Wang, C., Ma, J., Ren, G.: Collapse of ordered spatial pattern in neuronal network. Phys. A 451, 95–112 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Ma, J., Xu, Y., Wang, C., Jin, W.: Pattern selection and self-organization induced by random boundary initial values in a neuronal network. Phys. A 461, 586–594 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65(3), 851–1112 (1993)

    MATH  Google Scholar 

  20. Li, K., Vandermeer, J.H., Perfecto, I.: Disentangling endogenous versus exogenous pattern formation in spatial ecology: a case study of the ant Azteca sericeasur in southern Mexico. R. Soc. Open Sci. 3(5), 160073 (2016)

    Google Scholar 

  21. Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor. Biol. 245(2), 220–229 (2007)

    MathSciNet  Google Scholar 

  22. Chakraborty, B., Bairagi, N.: Complexity in a prey–predator model with prey refuge and diffusion. Ecol. Complex. 37, 11–23 (2019)

    Google Scholar 

  23. Wang, W., Liu, Q.X., Jin, Z.: Spatiotemporal complexity of a ratio-dependent predator–prey system. Phys. Rev. E 75(5), 051913 (2007)

    MathSciNet  Google Scholar 

  24. Aly, S., Kim, I., Sheen, D.: Turing instability for a ratio-dependent predator–prey model with diffusion. Appl. Math. Comput. 217(17), 7265–7281 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Sun, G.Q., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator–prey system. Nonlinear Dyn. 58(1–2), 75–84 (2009)

    MATH  Google Scholar 

  26. Ghorai, S., Poria, S.: Emergent impacts of quadratic mortality on pattern formation in a predator–prey system. Nonlinear Dyn. 87(4), 2715–2734 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Wang, W., Liu, S., Liu, Z.: Spatiotemporal dynamics near the Turing–Hopf bifurcation in a toxic-phytoplankton–zooplankton model with cross-diffusion. Nonlinear Dyn. 98(1), 27–37 (2019)

    MATH  Google Scholar 

  28. Sun, G.Q., Wang, C.H., Wu, Z.Y.: Pattern dynamics of a Gierer–Meinhardt model with spatial effects. Nonlinear Dyn. 88(2), 1385–1396 (2017)

    Google Scholar 

  29. Sun, G.Q.: Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 85(1), 1–12 (2016)

    MathSciNet  Google Scholar 

  30. Wang, T.: Pattern dynamics of an epidemic model with nonlinear incidence rate. Nonlinear Dyn. 77(1–2), 31–40 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Dagbovie, A.S., Sherratt, J.A.: Absolute stability and dynamical stabilisation in predator–prey systems. J. Math. Biol. 68(6), 1403–1421 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Sun, G.Q., Wang, C.H., Chang, L.L., Wu, Y.P., Li, L., Jin, Z.: Effects of feedback regulation on vegetation patterns in semi-arid environments. Appl. Math. Model. 61, 200–215 (2018)

    MathSciNet  Google Scholar 

  33. Bennett, J.J., Sherratt, J.A.: Long-distance seed dispersal affects the resilience of banded vegetation patterns in semi-deserts. J. Theor. Biol. 481, 151–161 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Tang, S., Xiao, Y., Cheke, R.A.: Multiple attractors of host–parasitoid models with integrated pest management strategies: eradication, persistence and outbreak. Theor. Popul. Biol. 73(2), 181–197 (2008)

    MATH  Google Scholar 

  35. Singh, B.K., Rao, J.S., Ramaswamy, R., Sinha, S.: The role of heterogeneity on the spatiotemporal dynamics of host–parasite metapopulation. Ecol. Model. 180(2–3), 435–443 (2004)

    Google Scholar 

  36. Hassell, M.P., Comins, H.N., May, R.M.: Spatial structure and chaos in insect population dynamics. Nature 353(6341), 255–258 (1991)

    Google Scholar 

  37. Hassell, M.P., Comins, H.N., May, R.M.: Species coexistence and self-organising spatial dynamics. Nature 370(6487), 290–292 (1994)

    Google Scholar 

  38. Nicholson, A.J., Bailey, V.A.: The balance of animal populations. Part I. Proc. Zool. Soc. Lond. 105(3), 551–598 (1935)

    Google Scholar 

  39. Hassell, M.P., May, R.M.: Stability in insect host–parasite models. J. Anim. Ecol. 42(3), 693–726 (1973)

    Google Scholar 

  40. Anderson, R.M., May, R.M.: Coevolution of hosts and parasites. Parasitology 85(2), 411–426 (1982)

    Google Scholar 

  41. Savill, N.J., Rohani, P., Hogeweg, P.: Self-reinforcing spatial patterns enslave evolution in a host–parasitoid system. J. Theor. Biol. 188(1), 11–20 (1997)

    Google Scholar 

  42. Kang, Y., Sasmal, S.K., Bhowmick, A.R., Chattopadhyay, J.: A host–parasitoid system with predation-driven component Allee effects in host population. J. Biol. Dyn. 9, 213–232 (2015)

    MathSciNet  Google Scholar 

  43. Comins, H.N., Hassell, M.P., May, R.M.: The spatial dynamics of host–parasitoid systems. J. Anim. Ecol. 61, 735–748 (1992)

    Google Scholar 

  44. Li, M., Han, B., Xu, L., Zhang, G.: Spiral patterns near Turing instability in a discrete reaction diffusion system. Chaos Soliton Fractals 49, 1–6 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Sun, G.Q., Jusup, M., Jin, Z., Wang, Y., Wang, Z.: Pattern transitions in spatial epidemics: mechanisms and emergent properties. Phys. Life Rev. 19, 43–73 (2016)

    Google Scholar 

  46. Li, L.: Patch invasion in a spatial epidemic model. Appl. Math. Comput. 258, 342–349 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Xu, L., Zhang, G., Cui, H.: Dependence of initial value on pattern formation for a logistic coupled map lattice. PLoS ONE 11(7), e0158591 (2016)

    Google Scholar 

  48. Sole, R.V., Valls, J., Bascomte, J.: Spiral waves, chaos and multiple attractors in lattice models of interacting populations. Phys. Lett. A 166(2), 123–128 (1992)

    Google Scholar 

  49. Parekh, N., Sinha, S.: Controlling spatiotemporal dynamics in excitable systems. Phys. Rev. E 65, 036227–1 (2002)

    Google Scholar 

  50. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    MATH  Google Scholar 

  51. Khan, A.Q., Qureshi, M.N.: Dynamics of a modified Nicholson–Bailey host–parasitoid model. Adv. Differ. Equ. 2015(23), 1–15 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Smith, M.J., Sherratt, J.A., Lambin, X.: The effects of density-dependent dispersal on the spatiotemporal dynamics of cyclic populations. J. Theor. Biol. 254(2), 264–274 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Dubey, B., Das, B., Hussain, J.: A predator–prey interaction model with self and cross-diffusion. Ecol. Model. 141(1–3), 67–76 (2001)

    Google Scholar 

  54. Vanag, V.K., Epstein, I.R.: Cross-diffusion and pattern formation in reaction–diffusion systems. Phys. Chem. Chem. Phys. 11(6), 897–912 (2009)

    Google Scholar 

  55. Elaydi, S.N.: Discrete Chaos with Applications in Science and Engineering. Chapman and Hall, New York (2007)

    Google Scholar 

  56. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

  57. Bai, L., Zhang, G.: Nontrivial solutions for a nonlinear discrete elliptic equation with periodic boundary conditions. Appl. Math. Comput. 210, 321–333 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Xu, L., Zhang, G., Han, B., Zhang, L., Li, M.F., Han, Y.T.: Turing instability for a two-dimensional logistic coupled map lattice. Phys. Lett. A 374, 3447–3450 (2010)

    MATH  Google Scholar 

  59. Bascompte, J., Solé, R.V.: Spatially induced bifurcations in single-species population dynamics. J. Anim. Ecol. 63, 256–264 (1994)

    Google Scholar 

  60. Xu, L., Liu, J., Zhang, G.: Pattern formation and parameter inversion for a discrete Lotka–Volterra cooperative system. Chaos Solitons Fractals 110, 226–231 (2018)

    MathSciNet  MATH  Google Scholar 

  61. Ghorai, S., Poria, S.: Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey–predator system supplying additional food. Chaos Soliton Fractals 85, 57–67 (2016)

    MathSciNet  MATH  Google Scholar 

  62. Ghorai, S., Poria, S.: Impacts of additional food on diffusion induced instabilities in a predator–prey system with mutually interfering predator. Chaos Soliton Fractals 103, 68–78 (2017)

    MathSciNet  MATH  Google Scholar 

  63. Wang, W., Zhang, L., Wang, H., Li, Z.: Pattern formation of a predator-prey system with Ivlev-type functional response. Ecol. Model. 221(2), 131–140 (2010)

    Google Scholar 

  64. Kapral, R.: Pattern formation in two-dimensional arrays of coupled, discrete-time oscillators. Phys. Rev. A 31(6), 3868 (1985)

    MathSciNet  Google Scholar 

  65. Boerlijst, M.C., Lamers, M.E., Hogeweg, P.: Evolutionary consequences of spiral waves in a host–parasitoid system. Proc. R. Soc. Lond. B 253(1336), 15–18 (1993)

    Google Scholar 

  66. Guo, Z.G., Song, L.P., Sun, G.Q., Li, C., Jin, Z.: Pattern dynamics of an SIS epidemic model with nonlocal delay. Int. J. Bifurc. Chaos Appl. Sci. Eng. 29(02), 1950027 (2019)

    MathSciNet  MATH  Google Scholar 

  67. Hagos, Z., Stankovski, T., Newman, J., Pereira, T., McClintock, P.V., Stefanovska, A.: Synchronization transitions caused by time-varying coupling functions. Philos. Trans. R. Soc. A 377(2160), 20190275 (2019)

    Google Scholar 

Download references

Acknowledgements

Research of Santu Ghorai is supported by Dr. D. S. Kothari Postdoctoral Fellowship under University Grants Commission scheme (Ref. No. F.4-2/2006 (BSR)/MA/18-19/0004, dated 26th December, 2018). Research of Nandadulal Bairagi is supported by RUSA 2.0, Jadavpur University, Ref No. R-11/725/19, dated 26.06.2019. We are thankful to the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandadulal Bairagi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorai, S., Chakraborty, P., Poria, S. et al. Dispersal-induced pattern-forming instabilities in host–parasitoid metapopulations. Nonlinear Dyn 100, 749–762 (2020). https://doi.org/10.1007/s11071-020-05505-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05505-w

Keywords

Navigation