Skip to main content
Log in

Stochastic P-bifurcation in a nonlinear impact oscillator with soft barrier under Ornstein–Uhlenbeck process

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the effect of randomness in the forcing on a harmonically excited bilinear impact oscillator with a soft barrier. The system parameter range considered coincides with regimes in which multiple stable attractors coexist. The random component superimposed on the harmonic excitations is shown to lead to qualitatively different dynamical behaviours at different parameter values, due to the presence of multiple coexisting attractors. This is classified as P-bifurcation. Wavelet analysis and recurrence quantification-based tools have been employed to show that these qualitative changes are due to noise-induced intermittency in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Ing, J., Pavlovskaia, E., Wiercigroch, M., Banerjee, S.: Experimental study of impact oscillator with one-sided elastic constraint. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 366, 679–705 (2008)

    MATH  Google Scholar 

  2. Virgin, L., Begley, C.: Grazing bifurcations and basins of attraction in an impact-friction oscillator. Phys. D: Nonlinear Phenom. 130, 43–57 (1999)

    MATH  Google Scholar 

  3. Chin, W., Ott, E., Nusse, H.E., Grebogi, C.: Universal behavior of impact oscillators near grazing incidence. Phys. Lett. A. 201, 197–204 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Pavlovskaia, E., Wiercigroch, M.: Analytical drift reconstruction for visco-elastic impact oscillators operating in periodic and chaotic regimes. Chaos Solitons Fractals 19, 151–161 (2004)

    MATH  Google Scholar 

  5. Peterka, F., Vacik, J.: Transition to chaotic motion in mechanical systems with impacts. J. Sound Vib. 154, 95–115 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Shaw, S.W.: The dynamics of a harmonically excited system having rigid amplitude constraints, part 1: subharmonic motions and local bifurcations. J. Appl. Mech. 52, 453 (1985)

    MathSciNet  Google Scholar 

  7. Nordmark, A.: Non-periodic motion caused by grazing incidence in an impact oscillator. J. Sound Vib. 145, 279–297 (1991)

    Google Scholar 

  8. Peterka, F.: Laws of impact motion of mechanical systems with one degree of freedom. ii- results of analogue computer modelling of the motion. Acta Tech. CSAV 19, 569–580 (1974)

    MATH  Google Scholar 

  9. Shaw, S.W., Holmes, P.J.: A periodically forced impact oscillator with large dissipation. J. Appl. Mech. 50, 849 (1983)

    MATH  Google Scholar 

  10. Suda, N., Banerjee, S.: Why does narrow band chaos in impact oscillators disappear over a range of frequencies? Nonlinear Dyn. 86, 2017–2022 (2016)

    Google Scholar 

  11. Peterka, F.: Behaviour of impact oscillator with soft and preloaded stop. Chaos Solitons Fractals 18, 79–88 (2003)

    Google Scholar 

  12. Ariaratnam, S., Xie, W.-C.: Almost-sure stochastic stability of coupled non-linear oscillators. Int. J. Non-Linear Mech. 29, 197–204 (1994)

    MATH  Google Scholar 

  13. Arnold, L., Crauel, H.: Random dynamical systems. Lecture Notes in Mathematics Lyapunov Exponents, pp. 1–22 (1991)

  14. Arnold, L., Namachchivaya, N.S., Schenk-Hoppé, K.R.: Toward an understanding of stochastic hopf bifurcation. Int. J. Bifurc. Chaos 06, 1947–1975 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Arnold, L.: Random Dynamical Systems. Springer Monographs in Mathematics (1998)

  16. Horsthemke, W., Lefever, R.: Noise-induced transitions. Noise in nonlinear dynamical systems, pp. 179–208

  17. Kumar, P., Narayanan, S., Gupta, S.: Finite element solution of Fokker–Planck equation of nonlinear oscillators subjected to colored non-Gaussian noise. Probab. Eng. Mech. 38, 143–155 (2014)

    Google Scholar 

  18. Kumar, P., Narayanan, S., Gupta, S.: Investigations on the bifurcation of a noisy Duffing–Van der Pol oscillator. Probab. Eng. Mech. 45, 70–86 (2016)

    Google Scholar 

  19. Davies, H.: Random vibration of a beam impacting stops. J. Sound Vib. 68, 479–487 (1980)

    MATH  Google Scholar 

  20. Dimentberg, M.F., Menyailov, A.I.: Response of a single-mass vibroimpact system to white-noise random excitation. ZAMM—Z. Angew. Math. Mech. 59, 709–716 (1979)

    MathSciNet  MATH  Google Scholar 

  21. Dimentberg, M.F., Iourtchenko, D.V.: Random vibrations with impacts: a review. Nonlinear Dyn. 36, 229–254 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Feng, J., Xu, W., Wang, R.: Stochastic responses of vibro-impact duffing oscillator excited by additive Gaussian noise. J. Sound Vib. 309, 730–738 (2008)

    Google Scholar 

  23. Feng, J., Xu, W.: Analysis of bifurcations for non-linear stochastic non-smooth vibro-impact system via top Lyapunov exponent. Appl. Math. Comput. 213, 577–586 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Li, C., Xu, W., Wang, L., Li, D.-X.: Stochastic responses of Duffing–Van der Pol vibro-impact system under additive colored noise excitation. Chin. Phys. B 22, 110205 (2013)

    Google Scholar 

  25. Feng, J., Xu, W., Rong, H., Wang, R.: Stochastic responses of Duffing–Van der Pol vibro-impact system under additive and multiplicative random excitations. Int. J. Non-Linear Mech. 44, 51–57 (2009)

    MATH  Google Scholar 

  26. Huang, Z., Liu, Z., Zhu, W.: Stationary response of multi-degree-of-freedom vibro-impact systems under white noise excitations. J. Sound Vib. 275, 223–240 (2004)

    Google Scholar 

  27. Namachchivaya, N.S., Park, J.H.: Stochastic dynamics of impact oscillators. J. Appl. Mech. 72, 862 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Iourtchenko, D.V., Song, L.L.: Numerical investigation of a response probability density function of stochastic vibroimpact systems with inelastic impacts. Int. J. Non-Linear Mech. 41, 447–455 (2006)

    MATH  Google Scholar 

  29. Rong, H., Wang, X., Xu, W., Fang, T.: Resonant response of a non-linear vibro-impact system to combined deterministic harmonic and random excitations. Int. J. Non-Linear Mech. 45, 474–481 (2010)

    Google Scholar 

  30. Zhu, H.: Stochastic response of vibro-impact Duffing oscillators under external and parametric Gaussian white noises. J. Sound Vib. 333, 954–961 (2014)

    Google Scholar 

  31. Kumar, P., Narayanan, S., Gupta, S.: Stochastic bifurcations in a vibro-impact Duffing–Van der Pol oscillator. Nonlinear Dyn. 85, 439–452 (2016)

    MathSciNet  Google Scholar 

  32. Kumar, P., Narayanan, S., Gupta, S.: Bifurcation analysis of a stochastically excited vibro-impact Duffing–Van der Pol oscillator with bilateral rigid barriers. Int. J. Mech. Sci. 127, 103–117 (2017)

    Google Scholar 

  33. Davenport, W.B., Root, W.L.: An Introduction to the Theory of Random Signals and Noise, vol. 159. McGraw-Hill, New York (1958)

    MATH  Google Scholar 

  34. Budd, C., Dux, F.: Intermittency in impact oscillators close to resonance. Nonlinearity 7, 1191–1224 (1994)

    MathSciNet  MATH  Google Scholar 

  35. Souza, S.L.D., Batista, A.M., Caldas, I.L., Viana, R.L., Kapitaniak, T.: Noise-induced basin hopping in a vibro-impact system. Chaos Solitons Fractals 32, 758–767 (2007)

    Google Scholar 

  36. Stone, E., Holmes, P.: Noise induced intermittency in a model of a turbulent boundary layer. Phys. D: Nonlinear Phenom. 37, 20–32 (1989)

    MathSciNet  MATH  Google Scholar 

  37. Venkatramani, J., Nair, V., Sujith, R., Gupta, S., Sarkar, S.: Precursors to flutter instability by an intermittency route: a model free approach. J. Fluids Struct. 61, 376–391 (2016)

    Google Scholar 

  38. Venkatramani, J., Sarkar, S., Gupta, S.: Intermittency in pitch-plunge aeroelastic systems explained through stochastic bifurcations. Nonlinear Dyn. 92, 1225–1241 (2018)

    Google Scholar 

  39. Venkatramani, J., Sarkar, S., Gupta, S.: Investigations on precursor measures for aeroelastic flutter. J. Sound Vib. 419, 318–336 (2018)

    Google Scholar 

  40. Jannasch, A., Mahamdeh, M., Schäffer, E.: Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise. Biophys. J. 102, 228301 (2012)

    Google Scholar 

  41. Schwarzl, M., Godec, A., Oshanin, G., Metzler, R.: A single predator charging a herd of prey: effects of self volume and predator–prey decision-making. J. Phys. A: Math. Theor. 49, 225601 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Ibrahim, R.A.: Stochastic vibro-impact dynamics. Vibro-impact dynamics lecture notes in applied and computational mechanics, pp. 193–216 (2009)

  43. Babitsky, V.I.: Theory of vibro-impact systems and applications. Springer Science & Business Media (2013)

  44. Bhattacharya, R., Majumdar, M.: Random dynamical systems: a review. Econ. Theor. 23, 13–38 (2003)

    MathSciNet  MATH  Google Scholar 

  45. Crauel, H., Debussche, A., Flandoli, F.: Random attractors. J. Dyn. Differ. Equ. 9, 307–341 (1997)

    MathSciNet  MATH  Google Scholar 

  46. Gurley, K., Kareem, K.: Applications of wavelet transforms in earthquake, wind and ocean engineering. Eng. Struct. 21, 149–167 (1999)

    Google Scholar 

  47. Eckmann, J.-P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. Europhys. Lett. (EPL) 4, 973–977 (1987)

    Google Scholar 

  48. Marwan, N., Carmenromano, M., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007)

    MathSciNet  Google Scholar 

  49. Marwan, N., Thiel, M., Nowaczyk, N.R.: Cross recurrence plot based synchronization of time series. Nonlinear Process. Geophys. 9, 325–331 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayan Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rounak, A., Gupta, S. Stochastic P-bifurcation in a nonlinear impact oscillator with soft barrier under Ornstein–Uhlenbeck process. Nonlinear Dyn 99, 2657–2674 (2020). https://doi.org/10.1007/s11071-020-05469-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05469-x

Keywords

Navigation