Skip to main content
Log in

Explicit dispersion relation for strongly nonlinear flexural waves using the homotopy analysis method

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Using the homotopy analysis method, we present an explicit frequency-versus-wavenumber nonlinear dispersion relation for a flexural elastic beam. In our analysis, we employ the Euler–Bernoulli kinematic hypothesis and consider both a conventional transverse motion model and an inextensional planar motion model. As an example, we consider geometric nonlinearity in the form of Green–Lagrange strain. The underlying constitutive relation is formulated by linearly relating the second Piola–Kirchhoff stress to the Green–Lagrange strain, although the method is directly applicable to material nonlinearities as well. The derived analytical solution, for each model, is obtained to Mth-order accuracy and is verified by comparing with a numerical result brought about by laboriously finding the roots of the corresponding travelling-wave implicit relation governing the nonlinear elastodynamics. This is the first derivation of an explicit dispersion relation for an elastic beam undergoing strongly nonlinear finite flexural deformation. The derived relation characterizes the nature of a traveling cosine-like nonlinear wave throughout its stable pre-breaking state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The angle \(\alpha \) has been redefined in the HAM analysis.

  2. In unshown results, this approximation produces negligible difference in the final nonlinear dispersion relation compared to using the exact form of \(\alpha \) for an inextensional beam model.

References

  1. Pochhammer, L.: Über die fortpflanzungsgeschwindigkeiten kleiner schwingungen in einem unbegrenzten isotropen kreiscylinder. J. Reine Angew. Math. 1876, 324 (1876)

    Article  MathSciNet  Google Scholar 

  2. Chree, C.: Longitudinal vibrations of a circular bar. Q. J. Math. 21, 287–298 (1886)

    MATH  Google Scholar 

  3. Love, A.E.H.: Mathematical Theory of Elasticity. Cambridge University Press, London (1934)

    Google Scholar 

  4. Hadamard, J.: Leçons sur la Propagation des Ondes et les Équations de l’Hydrodynamique: Lectures of 1898–1900. Hermann, Paris (1903)

    MATH  Google Scholar 

  5. Graff, K.F.: Wave Motion in Elastic Solids. Dover Publications, New York (1991)

    MATH  Google Scholar 

  6. Ben-Menahem, A.: A concise history of mainstream seismology: Origin, legacy, and perspectives. Bull. Seismol. Soc. Am. 85, 1202–1225 (1995)

    Google Scholar 

  7. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

  8. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-VCH, New York (1995)

    Book  Google Scholar 

  9. Destrade, M., Saccomandi, G.: Introduction to the special issue on waves in non-linear solid mechanics. Int. J. Non Linear Mech. 44, 445–449 (2009)

    Article  Google Scholar 

  10. Chakraborty, G., Mallik, A.: Dynamics of a weakly non-linear periodic chain. Int. J. Non Linear Mech. 36, 375–389 (2001)

    Article  Google Scholar 

  11. Narisetti, R., Leamy, M., Ruzzene, M.: A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. 132, 031001 (2010)

    Article  Google Scholar 

  12. Packo, P., Uhl, T., Staszewski, W., Leamy, M.: Amplitude-dependent Lamb wave dispersion in nonlinear plates. J. Acoust. Soc. Am. 140, 1319–1331 (2016)

    Article  Google Scholar 

  13. Abedinnasab, M.H., Hussein, M.I.: Wave dispersion under finite deformation. Wave Motion 50, 374–388 (2013)

    Article  MathSciNet  Google Scholar 

  14. Hussein, M., Khajehtourian, R.: Nonlinear Bloch waves and balance between hardening and softening dispersion. Proc. R. Soc. A 474, 20180173 (2018)

    Article  MathSciNet  Google Scholar 

  15. Hussein, M., Frazier, M., Abedinnasab, M.: Chapter 1: Microdynamics of phononic materials. In: Li, S., Gao, X. (eds.) Handbook of Micromechanics and Nanomechanics, pp. 1–28. Pan Stanford Publishing Co., Singapore (2013)

    Google Scholar 

  16. Khajehtourian, R., Hussein, M.I.: Dispersion characteristics of a nonlinear elastic metamaterial. AIP Adv. 4, 124308 (2014)

    Article  Google Scholar 

  17. Barchiesi, E., Laudato, M., Di Cosmo, F.: Wave dispersion in non-linear pantographic beams. Mech. Res. Commun. 94, 128–132 (2018)

    Article  Google Scholar 

  18. Gaygusuzoglu, G., Aydogdu, M., Gul, U.: Nonlinear wave modulation in nanorods using nonlocal elasticity theory. Int. J. Nonlinear Sci. Numer. Simul. 19, 1–11 (2018)

    Article  MathSciNet  Google Scholar 

  19. Liao, S.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, Boca Raton (2004a)

    MATH  Google Scholar 

  20. Liao, S.: On the homotopy analysis method for non-linear problems. Appl. Math. Comput. 147, 499–513 (2004b)

    MathSciNet  MATH  Google Scholar 

  21. da Silva, M.R.M.C., Glynn, C.C.: Non-linear flexural–flexural–torsional dynamics of inextensional beams, I: Equations of motion. J. Struct. Mech. 44, 437–443 (1978)

    Article  Google Scholar 

  22. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, Hoboken (2004)

    Book  Google Scholar 

  23. Lacarbonara, W., Yabuno, H.: Refined models of elastic beams undergoing large in-plane motions: Theory and experiment. Int. J. Solids Struct. 43, 5066–5084 (2006)

    Article  Google Scholar 

  24. Aghababaei, O., Nahvi, H., Ziaei-Rad, S.: Non-linear non-planar vibrations of geometrically imperfect inextensional beams, part I: equations of motion and experimental validation. Int. J. Non Linear Mech. 44, 147–160 (2009)

    Article  Google Scholar 

  25. Abedinnasab, M., Eigoli, A.K., Zohoor, H., Vossoughi, G.: On the influence of centerline strain on the stability of a bimorph piezo-actuated microbeam. Sci. Iran. 18, 1246–1252 (2011)

    Article  Google Scholar 

  26. Hosseini, S., Zamanian, M., Shams, S., Shooshtari, A.: Vibration analysis of geometrically nonlinear spinning beams. Mech. Mach. Theory 78, 15–35 (2014)

    Article  Google Scholar 

  27. Sayag, M.R., Dowell, E.H.: Linear versus nonlinear response of a cantilevered beam under harmonic base excitation: theory and experiment. J. Appl. Mech. 83, 101002 (2016)

    Article  Google Scholar 

  28. Georgiades, F.: Nonlinear equations of motion of L-shaped beam structures. Eur. J. Mech. A/Solids 65, 91–122 (2017)

    Article  MathSciNet  Google Scholar 

  29. Abedinnasab, M., Zohoor, H., Yoon, Y.-J.: Exact formulations of non-linear planar and spatial Euler-Bernoulli beams with finite strains. P. I. Mech. Eng C-J. Mec. 226(5), 1225–1236 (2012)

    Article  Google Scholar 

  30. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  31. Kevorkian, J., Cole, J.D.: Multiple Scales and Singular Perturbation Methods. Springer, New York (1995)

    Google Scholar 

  32. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (2000)

    Book  Google Scholar 

  33. He, J.H.: Homotopy perturbation method: A new nonlinear analytical technique. Appl. Math. Comput. 135, 73–79 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Pirbodaghi, T., Ahmadian, M., Fesanghary, M.: On the homotopy analysis method for non-linear vibration of beams. Mech. Res. Commun. 36, 143–148 (2009)

    Article  Google Scholar 

  35. Sedighi, H.M., Shirazi, K.H., Zare, J.: An analytic solution of transversal oscillation of quintic non-linear beam with homotopy analysis method. Int. J. Non Linear Mech. 47, 777–784 (2012)

    Article  Google Scholar 

  36. Tajaddodianfar, F., Yazdi, M.R.H., Pishkenari, H.N.: Nonlinear dynamics of mems/nems resonators: analytical solution by the homotopy analysis method. Microsyst. Technol. 23, 1913–1926 (2017)

    Article  Google Scholar 

  37. Derakhshan, R., Ahmadian, M., Firoozbakhsh, K.: Pull-in criteria of a nonclassical microbeam under electric field using homotopy method. Sci. Iran. 25, 175–185 (2018)

    Google Scholar 

  38. Han, J., Jin, G., Zhang, Q., Wang, W., Li, B., Qi, H., Feng, J.: Dynamic evolution of a primary resonance MEMS resonator under prebuckling pattern. Nonlinear Dyn. 93, 1–22 (2018)

    Article  Google Scholar 

  39. Khajehtourian, R., Hussein, M.I.: Nonlinear dispersion relation predicts harmonic generation in wave motion. arXiv:1905.02523 [nlin.ps] (2019)

Download references

Acknowledgements

MIH acknowledges support from National Science Foundation CAREER Grant Number 1254931 as well as a seed grant provided by the Imaging Science Interdisciplinary Research Theme (IRT) of the College of Engineering and Applied Science at the University of Colorado Boulder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud I. Hussein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Explicit first-order finite-strain dispersion relation for a flexural beam using the homotopy analysis method

From Sect. 4.1.2, we obtain the following explicit expressions for the first-order HAM nonlinear dispersion relation for a conventional beam:

$$\begin{aligned}&\omega _{{\text {HAM}}}^1(\kappa ;B)\nonumber \\&\quad =\sqrt{\frac{1-(B\kappa {})^2/4+ 3B^2/(8r_0^2)+3(1-(B\kappa )^2-15(B\kappa )^4/8)B^2\kappa ^4 r_f^2/(8r_0^2)}{1+r_0^2\kappa {}^2-r_0^2\kappa {}^4B^2(4+3 \kappa {}^2B^2)/4}} \kappa {}^2c_0r_0. \end{aligned}$$
(A.1)

Similarly, from Sect. 4.2.2 we obtain the following explicit expression for the first-order HAM nonlinear dispersion relation for an inextensional planar beam:

$$\begin{aligned}&\omega _{{\text {HAM}}}^1(\kappa ;B) \nonumber \\&\quad =\sqrt{\frac{1-B^2\kappa ^2 (-2+B^2\kappa ^2)/4+3(16+8B^2\kappa ^2-9B^4\kappa ^4)B^2\kappa ^4 r_f^2/(128r_0^2)}{1+\kappa ^2(8+B^2\kappa ^2-3B^4\kappa ^4)r_0^2/8}} \kappa {}^2c_0r_0, \end{aligned}$$
(A.2)

By taking the limit \(\mathop {{\text {lim}}}\nolimits _{B \rightarrow 0}\omega _{{\text {HAM}}}^M(\kappa ;B)\), in Eq. (A.1) or Eq. (A.2), we obtain

$$\begin{aligned} \omega _{{\text {inf}}}(\kappa )=\frac{c_0r_0\kappa {}^2}{\sqrt{1+ r_0^2\kappa {}^2}}, \end{aligned}$$
(A.3)

which is the exact frequency-versus-wavenumber dispersion relation based on linear, infinitesimal deformation.

Appendix B: Explicit dispersion relation based on all \(\xi =0\) conditions

An alternative approach for obtaining an explicit nonlinear dispersion relation is imposing a \(\xi =0\) condition for the second derivative of \({\bar{v}}\) [39], similar to the choices made in Eq. (30) for the conventional beam model and Eq. (57) for the inextensional beam model for \({\bar{v}}(0)\) and \({\bar{v}}_{\xi }(0)\). In particular, we select \({\bar{v}}_{\xi \xi }(0)=-B\kappa \). Applying this condition—instead of the \({\bar{v}}(0)={\bar{v}}(2\pi )\) condition—to the inextensional beam implicit dispersion relation of Eq. (55) yields the following explicit nonlinear dispersion relation:

$$\begin{aligned} \omega = \sqrt{\frac{E J \kappa ^4}{\rho (A - A B^2 \kappa ^2 + J \kappa ^2)}} \end{aligned}$$
(B.1)

The nonlinear dispersion relation from the two approaches is compared in Fig. 9. It is seen that there is a slight deviation between the two approaches, particularly at high wavenumbers. The all \(\xi =0\) approach has been numerically validated for a model of a thick rod with lateral inertia [39].

Fig. 9
figure 9

Comparison of explicit nonlinear dispersion relation obtained using all \(\xi =0\) conditions and the nonlinear dispersion relation obtained by the implicit approach of Ref. [13] where a spatial periodicity condition on the displacement gradient is assumed. These results are for the inextensional beam model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedin-Nasab, M.H., Bastawrous, M.V. & Hussein, M.I. Explicit dispersion relation for strongly nonlinear flexural waves using the homotopy analysis method. Nonlinear Dyn 99, 737–752 (2020). https://doi.org/10.1007/s11071-019-05383-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05383-x

Keywords

Navigation