Skip to main content
Log in

Robust control for cooperative driving system of heterogeneous vehicles with parameter uncertainties and communication constraints in the vicinity of traffic signals

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Taking heterogeneity, internal parameter uncertainties and communication constraints into account, the problem of cooperative driving system of heterogeneous vehicles is studied in the vicinity of traffic signals. This work studies the dynamics of heterogeneous vehicles and response performance from physical perspective and meanwhile analyzes the topology structure and communication constraints between vehicles and roadside equipment from cyber perspective. From the perspective of transportation cyber physical systems, cooperative driving model of heterogeneous vehicles with parameter uncertainties and communication constraints is constructed in the vicinity of traffic signals. We analyze robust stability by adopting Lyapunov–Krasovskii stability theory. According to the limitations of heterogeneity, dynamic uncertainties, communication delays and packet loss, the robust control strategies are proposed by using LMI (linear matrix inequality) method. Through theoretical analysis and numerical simulation, the validity and feasibility of research results are verified, which provides the guidance of control strategies for suppressing traffic congestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang, M., Daamen, W., Hoogendoorn, S.P., Arem, B.: Rolling horizon control framework for driver assistance systems. Part II: cooperative sensing and cooperative control. Transp. Res. Part C 40, 290–311 (2014)

    Article  Google Scholar 

  2. Tang, T.Q., Shi, W.F., Shang, H.Y., Wang, Y.P.: A new car-following model with consideration of inter-vehicle communication. Nonlinear Dyn. 76(4), 2017–2023 (2014)

    Article  Google Scholar 

  3. Li, Y.F., Zhao, H., Zheng, T.X., Sun, F.L., Feng, H.Z.: Non-lane-discipline-based car-following model incorporating the electronic throttle dynamics under connected environment. Nonlinear Dyn. 90(4), 2345–2358 (2017)

    Article  Google Scholar 

  4. Avedisov, S.S., Orosz, G.: Analysis of connected vehicle networks using network-based perturbation techniques. Nonlinear Dyn. 89(3), 1651–1672 (2017)

    Article  MathSciNet  Google Scholar 

  5. Jia, D.Y., Ngoduy, D.: Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication. Transp. Res. Part B 90, 172–191 (2016)

    Article  Google Scholar 

  6. Jin, Q., Wu, G.Y., Boriboonsomsin, K., Barth, M.J.: Power-based optimal longitudinal control for a connected eco-driving system. IEEE Trans. Intell. Transp. Syst. 17(10), 2900–2910 (2016)

    Article  Google Scholar 

  7. Liu, B.Y., Yao, D.Y., Lu, K.J., Ngoduy, D., Wang, J.P., Wu, L.B.: A joint control-communication design for reliable vehicle platooning in hybrid traffic. IEEE Trans. Veh. Technol. 66(10), 9394–9409 (2017)

    Article  Google Scholar 

  8. Yu, S.W., Liu, Q.L., Li, X.H.: Full velocity difference and acceleration model for a car-following theory. Commun. Nonlinear Sci. Numer. Simul. 18, 1229–1234 (2013)

    Article  MathSciNet  Google Scholar 

  9. Jia, D.Y., Ngoduy, D.: Platoon based cooperative driving model with consideration of realistic inter-vehicle communication. Transp. Res. Part C 68, 245–264 (2016)

    Article  Google Scholar 

  10. Jia, D.Y., Lu, K.J., Wang, J.P., Zhang, X., Shen, X.M.: A survey on platoon-based vehicular cyber-physical systems. IEEE Commun. Surv. Tutor. 18(1), 263–284 (2016)

    Article  Google Scholar 

  11. Liu, H., Sun, D.H., Zhao, M.: Analysis of traffic flow based on car-following theory: a cyber-physical perspective. Nonlinear Dyn. 84(2), 881–893 (2016)

    Article  MathSciNet  Google Scholar 

  12. Li, Z.P., Li, W.Z., Xu, S.Z., Qian, Y.Q.: Analyses of vehicle’s self-stabilizing effect in an extended optimal velocity model by utilizing historical velocity in an environment of intelligent transportation system. Nonlinear Dyn. 80(1–2), 529–540 (2015)

    Article  Google Scholar 

  13. Xue, Y., Guo, Y., Shi, Y., Lv, L.Z., He, H.D.: Feedback control for the lattice hydrodynamics model with drivers’ reaction time. Nonlinear Dyn. 88(1), 145–156 (2017)

    Article  Google Scholar 

  14. Li, X.H., Yang, T., Liu, J., Qin, X.Q., Yu, S.W.: Effects of vehicle gap changes on fuel economy and emission performance of the traffic flow in the ACC strategy. PLoS ONE 13, e0200110 (2018)

    Article  Google Scholar 

  15. Al-Jhayyish, A.M.H., Schmidt, K.W.: Feedforward strategies for cooperative adaptive cruise control in heterogeneous vehicle strings. IEEE Trans. Intell. Transp. Syst. 19(1), 113–122 (2018)

    Article  Google Scholar 

  16. Gao, F., Li, S.B., Zheng, Y., Kum, D.: Robust control of heterogeneous vehicular platoon with uncertain dynamics and communication delay. IET Intel. Transp. Syst. 10(7), 503–513 (2016)

    Article  Google Scholar 

  17. Zheng, Y., Li, S.B., Li, K.Q., Ren, W.: Platooning of connected vehicles with undirected topologies: robustness analysis and distributed H-infinity controller synthesis. IEEE Trans. Intell. Transp. Syst. 19(5), 1353–1364 (2017)

    Article  Google Scholar 

  18. Guo, G., Yue, W.: Hierarchical platoon control with heterogeneous information feedback. IET Control Theory Appl. 5(15), 1766–1781 (2011)

    Article  MathSciNet  Google Scholar 

  19. Zheng, Y., Li, S.B., Wang, J.Q., Cao, D.P., Li, K.Q.: Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies. IEEE Trans. Intell. Transp. Syst. 17(1), 14–26 (2016)

    Article  Google Scholar 

  20. Li, S.B., Gao, F., Li, K.Q., Wang, L.Y., You, K.Y., Cao, D.P.: Robust longitudinal control of multi-vehicle systems-a distributed h-infinity method. IEEE Trans. Intell. Transp. Syst. 19(9), 2779–2788 (2018)

    Article  Google Scholar 

  21. Li, S.B., Gao, F., Cao, D.P., Li, K.Q.: Multiple-model switching control of vehicle longitudinal dynamics for platoon-level automation. IEEE Trans. Veh. Technol. 65(6), 4480–4492 (2016)

    Article  Google Scholar 

  22. Liu, Y.G., Gao, H.L., Xu, B.G., Liu, G.Y., Cheng, H.: Autonomous coordinated control of a platoon of vehicles with multiple disturbances. IET Control Theory Appl. 8(18), 2325–2335 (2014)

    Article  MathSciNet  Google Scholar 

  23. Chang, H.J., Park, G.T.: A study on traffic signal control at signalized intersections in vehicular ad hoc networks. Ad Hoc Netw. 11(7), 2115–2124 (2013)

    Article  Google Scholar 

  24. Asadi, B., Vahidi, A.: Predictive cruise control: utilizing upcoming traffic signal information for improving fuel economy and reducing trip time. IEEE Trans. Control Syst. Technol. 19(3), 707–714 (2011)

    Article  Google Scholar 

  25. Liu, B., Kamel, A.E.: V2X-based decentralized cooperative adaptive cruise control in the vicinity of intersections. IEEE Trans. Intell. Transp. Syst. 17(3), 644–658 (2016)

    Article  Google Scholar 

  26. Yu, S.W., Fu, R., Guo, Y.S., Xin, Q., Shi, Z.K.: Consensus and optimal speed advisory model for mixed traffic at an isolated signalized intersection. Physica A 531(1), 121789 (2019)

    Article  MathSciNet  Google Scholar 

  27. Xia, H., Boriboonsomsin, K., Barth, M.: Dynamic eco-driving for signalized arterial corridors and its indirect network-wide energy/emissions benefits. J. Intell. Transp. Syst. 17(1), 31–41 (2013)

    Article  Google Scholar 

  28. Yu, S.W., Shi, Z.K.: Analysis of car-following behaviors considering the green signal countdown device. Nonlinear Dyn. 82(1–2), 731–740 (2015)

    Article  Google Scholar 

  29. Bo, Z., Ge, G., Wang, L.Y., Qiong, W.: Vehicle speed planning and control for fuel consumption optimization with traffic light state. Acta Autom. Sin. 44(3), 461–470 (2018)

    Google Scholar 

  30. Malikopoulos, A.A., Cassandras, C.G., Zhang, Y.J.: A decentralized energy-optimal control framework for connected automated vehicles at signal-free intersections. Automatica 93, 244–256 (2018)

    Article  MathSciNet  Google Scholar 

  31. Chen, D., Sun, D.H., Li, Y., Zhao, M., Zheng, L.J.: Robust stabilization and \(\text{ H }\infty \) control of cooperative driving system with time delay in variable speed-limited area from cyber-physical perspective. Asian J. Control 21(6), 1–15 (2019). https://doi.org/10.1002/asjc.1870

    Article  MathSciNet  Google Scholar 

  32. Chen, D., Sun, D.H., Zhao, M., Yang, L.Y., Zhou, T., Xie, F.: Distributed robust \(\text{ H }\infty \) control of connected eco-driving system with time-varying delay and external disturbances in the vicinity of traffic signals. Nonlinear Dyn. 92(4), 1829–1844 (2018)

    Article  Google Scholar 

  33. Huang, C.L., Fallah, Y.P., Sengupta, R., Krishnan, H.: Adaptive intervehicle communication control for cooperative safety systems. IEEE Netw. Mag. Global Internetwork. 24(1), 6–13 (2010)

    Article  Google Scholar 

  34. Elia, N., Mitter, S.K.: Stabilization of linear systems with limited information. IEEE Trans. Autom. Control 46(9), 1384–1400 (2002)

    Article  MathSciNet  Google Scholar 

  35. Fu, M.Y., Xie, L.H.: The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50(11), 1698–1711 (2005)

    Article  MathSciNet  Google Scholar 

  36. Boyd, S., Elghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  37. Wu, M., He, Y., She, J.H.: Stability Analysis and Robust Control of Time-Delay Systems. Springer, New York (2010). https://doi.org/10.1007/978-3-642-03037-6

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61573075, 61803052), the Doctoral Research Project of Guangxi University of Finance and Economics (Grant No. BS2019027), the Foundation for High-level Talents of Chongqing University of Art and Sciences (Grant No. 2017RJD13) and the Natural Science Foundation of Chongqing (Grant No. cstc2017jcyjBX0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dihua Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Sun, D., Liu, H. et al. Robust control for cooperative driving system of heterogeneous vehicles with parameter uncertainties and communication constraints in the vicinity of traffic signals. Nonlinear Dyn 99, 1659–1674 (2020). https://doi.org/10.1007/s11071-019-05382-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05382-y

Keywords

Navigation