Skip to main content
Log in

Different dynamics of repetitive neural spiking induced by inhibitory and excitatory autapses near subcritical Hopf bifurcation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the post-inhibitory rebound (PIR) spike induced by inhibitory current pulse, in the present paper, a novel counterintuitive phenomenon that the inhibitory autapse with time delay can induce the resting state changed to stable spiking pattern is identified near subcritical Hopf bifurcation of Hodgkin–Huxley model. The delayed inhibitory autaptic current pulse induced by the preceded action potential can induce the preceding PIR spike via the hyperpolarization, rebound, and depolarization processes, which is compared with spiking induced by excitatory autapse via only a depolarization process. The threshold of inhibitory or excitatory autaptic conductance to induce spiking with increasing time delay, and the threshold curve of inhibitory or excitatory pulse current to evoke a spike exhibit damping oscillations can be well interpreted with the damping dynamics of focus near subcritical Hopf bifurcation. However, due to PIR mechanism, the threshold conductance of inhibitory autapse is stronger than that of excitatory autapse, and the spiking period for inhibitory autapse, which is composed of time delay and durations of the other three processes, is longer than the one for excitatory autapse, which is composed of time delay and duration of only a depolarization process. Therefore, a linear correlation between spiking period and time delay is identified, which shows that autapse can modulate the spike timing related to temporal coding. The results present a novel viewpoint and a potential function that inhibitory autapse can facilitate spiking like the excitatory autapse and provide effective measures to modulate neuronal spiking pattern, which is related to subcritical Hopf bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10(6), 1171–1266 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge, MA (2007)

    Google Scholar 

  3. Bean, B.P.: The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8(6), 451–465 (2007)

    MathSciNet  Google Scholar 

  4. Bartos, M., Vida, I., Jonas, P.: Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8(1), 45–56 (2007)

    Google Scholar 

  5. Prescott, S.A., Ratté, S., De Schutter, E., Sejnowski, T.J.: Pyramidal neurons switch from integrators in vitro to resonators under in vivo-like conditions. J. Neurophysiol. 100(6), 3030–3042 (2008)

    Google Scholar 

  6. Zhao, Z.G., Gu, H.G.: Transitions between classes of neuronal excitability and bifurcations induced by autapse. Sci. Rep. 7(1), 7660 (2017)

    Google Scholar 

  7. Goldwyn, J.H., Slabe, B.R., Travers, J.B., Terman, D.: Gain control with A-type potassium current: I-A as a switch between divisive and subtractive inhibition. PLoS Comput. Biol. 14(7), e1006292 (2018)

    Google Scholar 

  8. Saada, R., Miller, N., Hurwitz, I., Susswein, A.J.: Autaptic excitation elicits persistent activity and a plateau potential in a neuron of known behavioral function. Curr. Biol. 19(6), 479–684 (2009)

    Google Scholar 

  9. Bacci, A., Huguenard, J.R., Prince, D.A.: Functional autaptic neurotransmission in fast-spiking interneurons: a novel form of feedback inhibition in the neocortex. J. Neurosci. 23(3), 859–866 (2003)

    Google Scholar 

  10. Guo, D.Q., Wang, Q.Y., Perc, M.: Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses. Phys. Rev. E 85(6), 061905 (2012)

    Google Scholar 

  11. Hilscher, M.M., Leao, K.E., Leao, R.N.: Synchronization through nonreciprocal connections in a hybrid hippocampus microcircuit. Front. Cell. Neurosci. 7, 120 (2013)

    Google Scholar 

  12. Dodla, R., Rinzel, J.: Enhanced neuronal response induced by fast inhibition. Phys. Rev. E 73(1), 010903 (2006)

    Google Scholar 

  13. Dodla, R., Svirskis, G., Rinzel, J.: Well-timed, brief inhibition can promote spiking: postinhibitory facilitation. J. Neurophysiol. 95(4), 2664–2677 (2006)

    Google Scholar 

  14. Winograd, M., Destexhe, A., Sanchez-Vives, M.V.: Hyperpolarization-activated graded persistent activity in the prefrontal cortex. Proc. Natl. Acad. Sci. USA 105(20), 7298–7303 (2008)

    Google Scholar 

  15. Elgueta, C., Kohler, J., Bartos, M.: Persistent discharges in dentate gyrus perisoma-inhibiting interneurons require hyperpolarization-activated cyclic nucleotide-gated channel activation. J. Neurosci. 35(10), 4131–4139 (2015)

    Google Scholar 

  16. Tikidji-hamburyan, R.A., Martinez, J.J., White, J.A., Canavier, C.C.: Resonant interneurons can increase robustness of gamma oscillations. J. Neurosci. 35(47), 15682–15695 (2015)

    Google Scholar 

  17. Zhao, Z.G., Jia, B., Gu, H.G.: Bifurcations and enhancement of neuronal firing induced by negative feedback. Nonlinear Dyn. 86(3), 1549–1560 (2016)

    Google Scholar 

  18. Jia, B.: Negative feedback mediated by fast inhibitory autapse enhances neuronal oscillations near a Hopf bifurcation point. Int. J. Bifurc. Chaos 28(2), 1850030 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Zhao, Z.G., Gu, H.G.: The influence of single neuron dynamics and network topology on time delay-induced multiple synchronous behaviors in inhibitory coupled network. Chaos Solitons Fractals 80, 96–108 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Gu, H.G., Zhao, Z.G.: Dynamics of time delay-induced multiple synchronous behaviors in inhibitory coupled neurons. PLoS ONE 10(9), e0138593 (2015)

    Google Scholar 

  21. Jia, B., Wu, Y.C., He, D., Guo, B.H., Xue, L.: Dynamics of transitions from anti-phase to multiple in-phase synchronizations in inhibitory coupled bursting neurons. Nonlinear Dyn. 93(3), 1599–1618 (2018)

    Google Scholar 

  22. Wang, Q.Y., Chen, G.R., Perc, M.: Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS ONE 6(1), e15851 (2011)

    Google Scholar 

  23. Li, L., Zhao, Z.G., Gu, H.G.: Bifurcations of time-delay-induced multiple transitions between bifurcations in-phase and anti-phase synchronizations in neurons with excitatory or inhibitory synapses. Int. J. Bifurc. Chaos 29(11), 1950147 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Ding, X.L., Li, Y.Y.: Period-adding bifurcation of neural firings induced by inhibitory autapses with time-delay. Acta Phys. Sin. 65(21), 210502 (2016). (in chinese)

    Google Scholar 

  25. Cao, B., Guan, L.N., Gu, H.G.: Bifurcation mechanism of not increase but decrease of spike number within a neural burst induced by excitatory effect. Acta Phys. Sin. 67(24), 240502 (2018). (in chinese)

    Google Scholar 

  26. Wu, F.Q., Gu, H.G., Li, Y.Y.: Inhibitory electromagnetic induction current induced enhancement instead of reduction of neural bursting activities. Commun. Nonlinear Sci. Numer. Simul. 79, 104924 (2019)

    MathSciNet  Google Scholar 

  27. Van Der Loos, H., Glaser, E.M.: Autapses in neocortex cerebri: synapses between a pyramidal cell’s axon and its own dendrites. Brain Res. 48, 355–360 (1972)

    Google Scholar 

  28. Jiang, M., Zhu, J., Liu, Y.P., Yang, M.P., Tian, C.P., Jiang, S., Wang, Y., Guo, H., Wang, K., Shu, Y.: Enhancement of asynchronous release from fast-spiking interneuron in human and rat epileptic neocortex. PLoS Biol. 10(5), e1001324 (2012)

    Google Scholar 

  29. Yin, L.P., Zheng, R., Ke, W., He, Q.S., Zhang, Y., Li, J.L., Wang, B., Mi, Z., Long, Y.S., Rasch, M.J.: Autapses enhance bursting and coincidence detection in neocortical pyramidal cells. Nat. Commun. 9, 4890 (2018)

    Google Scholar 

  30. Bacci, A., Huguenard, J.R.: Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons. Neuron 49(1), 119–130 (2006)

    Google Scholar 

  31. Cobb, S.R., Halasy, K., Vida, I., Nyiri, G., Tamas, G., Buhl, E.H., Somogyi, P.: Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus. Neuroscience 79(3), 629–648 (1997)

    Google Scholar 

  32. Li, Y.Y., Schmid, G., Hanggi, P., Schimansky-Geier, L.: Spontaneous spiking in an autaptic Hodgkin–Huxley setup. Phys. Rev. E 82(6), 061907 (2010)

    MathSciNet  Google Scholar 

  33. Yao, Y.G., Ma, J.: Signal transmission by autapse with constant or time-periodic coupling intensity in the FitzHugh–Nagumo neuron. Eur. Phys. J. Spec. Top. 227(7–9), 757–766 (2018)

    Google Scholar 

  34. Ge, M.Y., Xu, Y., Zhang, Z.K., Peng, Y.X., Kang, W.J., Yang, L.J., Jia, Y.: Autaptic modulation-induced neuronal electrical activities and wave propagation on network under electromagnetic induction. Eur. Phys. J. Spec. Top. 227(7–9), 799–809 (2018)

    Google Scholar 

  35. Xu, Y., Ying, H.P., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 4352 (2017)

    Google Scholar 

  36. Qin, H.X., Ma, J., Jin, W.Y., Wang, C.N.: Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci. China Technol. Sci. 57(5), 936–946 (2014)

    Google Scholar 

  37. Wang, H.T., Wang, L.F., Chen, Y.L., Chen, Y.: Effect of autaptic activity on the response of a Hodgkin–Huxley neuron. Chaos 24(3), 033122 (2014)

    MathSciNet  Google Scholar 

  38. Hashemi, M., Valizadeh, A., Azizi, Y.: Effect of duration of synaptic activity on spike rate of a Hodgkin–Huxley neuron with delayed feedback. Phys. Rev. E 85(2), 021917 (2012)

    Google Scholar 

  39. Guo, D.Q., Wu, S.D., Chen, M.M., Perc, M., Zhang, Y.S., Ma, J.L., Cui, Y., Xu, P., Xia, Y., Yao, D.Z.: Regulation of irregular neuronal firing by autaptic transmission. Sci. Rep. 6, 26096 (2016)

    Google Scholar 

  40. Wang, H.T., Ma, J., Chen, Y.L., Chen, Y.: Effect of an autapse on the firing pattern transition in a bursting neuron. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3242–3254 (2014)

    MathSciNet  Google Scholar 

  41. Guo, D.Q., Chen, M.M., Perc, M., Wu, S.D., Xia, C., Zhang, Y.S., Xu, P., Xia, Y., Yao, D.Z.: Firing regulation of fast-spiking interneurons by autaptic inhibition. Europhys. Lett. 114(3), 30001 (2016)

    Google Scholar 

  42. Song, X.L., Wang, H.T., Chen, Y.: Autapse-induced firing patterns transitions in the Morris–Lecar neuron model. Nonlinear Dyn. 96(4), 2341–2350 (2019)

    Google Scholar 

  43. Yilmaz, E., Ozer, M., Baysal, V., Perc, M.: Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci. Rep. 6, 30914 (2016)

    Google Scholar 

  44. Song, X.L., Wang, H.T., Chen, Y.: Coherence resonance in an autaptic Hodgkin–Huxley neuron with time delay. Nonlinear Dyn. 94(1), 141–150 (2018)

    Google Scholar 

  45. Uzun, R.: Influences of autapse and channel blockage on multiple coherence resonance in a single neuron. Appl. Math. Comput. 315, 203–210 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Connelly, W.M.: Autaptic connections and synaptic depression constrain and promote gamma oscillations. PLoS ONE 9(2), e89995 (2014)

    Google Scholar 

  47. Wu, Y.N., Gong, Y.B., Wang, Q.: Autaptic activity-induced synchronization transitions in Newman–Watts network of Hodgkin–Huxley neurons. Chaos 25(4), 043113 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Yilmaz, E., Baysal, V., Perc, M., Ozer, M.: Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network. Sci. China Technol. Sci. 59(3), 364–370 (2016)

    Google Scholar 

  49. Qin, H.X., Wu, Y., Wang, C.N., Ma, J.: Emitting waves from defects in network with autapses. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 164–174 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Qin, H.X., Ma, J., Wang, C.N., Chu, R.: Autapse-induced target wave, spiral wave in regular network of neurons. Sci. China Phys. Mech. Astron. 57(10), 1918–1926 (2014)

    Google Scholar 

  51. Ma, J., Song, X.L., Tang, J., Wang, C.N.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)

    Google Scholar 

  52. Yilmaz, E., Baysal, V., Ozer, M., Perc, M.: Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks. Physica A 444, 538–546 (2016)

    MathSciNet  MATH  Google Scholar 

  53. Li, Y.Y., Gu, H.G., Ding, X.L.: Bifurcations of enhanced neuronal bursting activities induced by the negative current mediated by inhibitory autapse. Nonlinear Dyn. 97(4), 2091–2105 (2019)

    Google Scholar 

  54. Wechselberger, M.: Existence and bifurcation of canards in R-3 in the case of a folded node. SIAM J. App. Dyn. Syst. 4(1), 101–139 (2005)

    MathSciNet  MATH  Google Scholar 

  55. Zhao, Z.G., Li, L., Gu, H.G.: Dynamical mechanism of hyperpolarization-activated non-specific cation current induced resonance and spike-timing precision in a neuronal model. Front. Cell Neurosci. 12, 62 (2018)

    Google Scholar 

  56. Hodgkin, A.L.: The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol. 107(2), 165–181 (1948)

    Google Scholar 

  57. Jalil, S., Belykh, I., Shilnikov, A.: Spikes matter for phase-locked bursting in inhibitory neurons. Phys. Rev. E 85, 036214 (2012)

    Google Scholar 

  58. Somers, D., Kopell, N.: Rapid synchronization through fast threshold modulation. Biol. Cybern. 68, 393–407 (1993)

    Google Scholar 

  59. Wang, X.J., Buzsáki, G.: Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413 (1996)

    Google Scholar 

  60. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia (2002)

    MATH  Google Scholar 

  61. Zhang, X.J., Gu, H.G.: The influences of dynamics of Hopf bifurcation on the conduction failure of action potentials along nerve C-fiber. Int. J. Bifurc. Chaos 29(7), 19500093 (2019)

    Google Scholar 

  62. Guo, D.Q., Perc, M., Liu, T.J., Yao, D.Z.: Functional importance of noise in neuronal information processing. Europhys. Lett. 124(5), 50001 (2018)

    Google Scholar 

  63. Guo, D.Q., Perc, M., Zhang, Y.S., Xu, P., Yao, D.Z.: Frequency-difference-dependent stochastic resonance in neural systems. Phys. Rev. E 96(2), 022415 (2017)

    Google Scholar 

  64. Perc, M.: Stochastic resonance on weakly paced scale-free networks. Phys. Rev. E 78(3), 036105 (2008)

    MathSciNet  Google Scholar 

  65. Uzuntarla, M., Uzun, R., Yilmaz, E., Ozer, M., Perc, M.: Noise-delayed decay in the response of a scale-free neuronal network. Chaos Solitons Fractals 56, 202–208 (2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaguang Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11802085, 11572225, and 11872276, and the Key Scientific Research Project of Colleges and Universities in Henan Province under Grant No. 20B110003.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Li, L., Gu, H. et al. Different dynamics of repetitive neural spiking induced by inhibitory and excitatory autapses near subcritical Hopf bifurcation. Nonlinear Dyn 99, 1129–1154 (2020). https://doi.org/10.1007/s11071-019-05342-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05342-6

Keywords

Navigation