Skip to main content
Log in

Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator: part I—linear problem

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate, experimentally and theoretically, the linear mode coupling between the first symmetric and antisymmetric modes of an electrothermally tuned and electrostatically actuated micromachined arch resonator. The arch is excited using an antisymmetric partial electrode to activate both modes of vibrations. Theoretically, we explore the static and dynamic behavior using the Galerkin method. When tuning the electrothermal voltage, the first symmetric frequency increases while the first antisymmetric frequency decreases until they cross. The results show linear coupling and hybridization of both modes near crossing only in the presence of the perturbation from the electrostatic force using the partial electrode. We show the linear merging of both modes at crossing. Also, the eigenfrequency variation around crossing shows a ratio of 2:1 between the second symmetric mode and the first symmetric/antisymmetric modes, which can lead to simultaneous 1:1 and 2:1 internal resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Potekin, R., Dharmasena, S., Keum, H., Jiang, X., Lee, J., Kim, S., Bergman, L.A., Vakakis, A.F., Cho, H.: Multi-frequency atomic force microscopy based on enhanced internal resonance of an inner-paddled cantilever. Sens. Actuators A Phys. 273, 206–220 (2018)

    Article  Google Scholar 

  2. Zhang, T., Wei, X., Jiang, Z., Cui, T.: Sensitivity enhancement of a resonant mass sensor based on internal resonance. Appl. Phys. Lett. 113(22), 223505 (2018)

    Article  Google Scholar 

  3. Hajjaj, A.Z., Hafiz, M.A., Younis, M.I.: Mode coupling and nonlinear resonances of MEMS arch resonators for bandpass filters. Sci. Rep. 7, 41820 (2017)

    Article  Google Scholar 

  4. Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3, 806 (2012)

    Article  Google Scholar 

  5. Charmet, J., Daly, R., Thiruvenkatanathan, P., Woodhouse, J., Seshia, A.A.: Observations of modal interaction in lateral bulk acoustic resonators. Appl. Phys. Lett. 105(1), 013502 (2014)

    Article  Google Scholar 

  6. Pu, D., Wei, X., Xu, L., Jiang, Z., Huan, R.: Synchronization of electrically coupled micromechanical oscillators with a frequency ratio of 3:1. Appl. Phys. Lett. 112(1), 013503 (2018)

    Article  Google Scholar 

  7. Karabalin, R., Cross, M., Roukes, M.: Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Phys. Rev. B 79(16), 165309 (2009)

    Article  Google Scholar 

  8. Mahboob, I., Dupuy, R., Nishiguchi, K., Fujiwara, A., Yamaguchi, H.: Hopf and period-doubling bifurcations in an electromechanical resonator. Appl. Phys. Lett. 109(7), 073101 (2016)

    Article  Google Scholar 

  9. Daqaq, M.F., Abdel-Rahman, E.M., Nayfeh, A.H.: Two-to-one internal resonance in microscanners. Nonlinear Dyn. 57(1–2), 231 (2009)

    Article  Google Scholar 

  10. Hajjaj, A., Jaber, N., Hafiz, M., Ilyas, S., Younis, M.: Multiple internal resonances in MEMS arch resonators. Phys. Lett. A 382, 3393–3398 (2018)

    Article  Google Scholar 

  11. Samanta, C., Yasasvi Gangavarapu, P., Naik, A.: Nonlinear mode coupling and internal resonances in MoS2 nanoelectromechanical system. Appl. Phys. Lett. 107(17), 173110 (2015)

    Article  Google Scholar 

  12. Petyt, M., Fleischer, C.: Free vibration of a curved beam. J. Sound Vib. 18(1), 17–30 (1971)

    Article  Google Scholar 

  13. Rega, G.: Nonlinear vibrations of suspended cables—part I: modeling and analysis. Appl. Mech. Rev. 57(6), 443–478 (2004)

    Article  Google Scholar 

  14. Lacarbonara, W., Arafat, H.N., Nayfeh, A.H.: Non-linear interactions in imperfect beams at veering. Int. J. Non Linear Mech. 40(7), 987–1003 (2005)

    Article  Google Scholar 

  15. Hajjaj, A.Z., Alcheikh, N., Younis, M.I.: The static and dynamic behavior of MEMS arch resonators near veering and the impact of initial shapes. Int. J. Non Linear Mech. 95, 277–286 (2017)

    Article  Google Scholar 

  16. Liu, X.: Behavior of derivatives of eigenvalues and eigenvectors in curve veering and mode localization and their relation to close eigenvalues. J. Sound Vib. 256(3), 551–564 (2002)

    Article  Google Scholar 

  17. Zhao, C., Montaseri, M.H., Wood, G.S., Pu, S.H., Seshia, A.A., Kraft, M.: A review on coupled MEMS resonators for sensing applications utilizing mode localization. Sens. Actuators A Phys. 249, 93–111 (2016)

    Article  Google Scholar 

  18. Sazonova, V., Yaish, Y., Üstünel, H., Roundy, D., Arias, T.A., McEuen, P.L.: A tunable carbon nanotube electromechanical oscillator. Nature 431(7006), 284 (2004)

    Article  Google Scholar 

  19. Ouakad, H.M., Younis, M.I.: Natural frequencies and mode shapes of initially curved carbon nanotube resonators under electric excitation. J. Sound Vib. 330(13), 3182–3195 (2011)

    Article  Google Scholar 

  20. Pierre, C.: Mode localization and eigenvalue loci veering phenomena in disordered structures. J. Sound Vib. 126(3), 485–502 (1988)

    Article  MathSciNet  Google Scholar 

  21. Zhao, C., Pandit, M., Sun, B., Sobreviela, G., Zou, X., Seshia, A.: A closed-Loop readout configuration for mode-Localized resonant MEMS sensors. J. Microelectromech. Syst. 26(3), 501–503 (2017)

    Article  Google Scholar 

  22. Montaseri, M.H., Xie, J., Chang, H., Chao, Z., Wood, G., Kraft, M.: Atmospheric pressure mode localization coupled resonators force sensor. In: Transducers-2015 18th International Conference on 2015 Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 1183–1186. IEEE (2015)

  23. Emam, S.A., Nayfeh, A.H.: Non-linear response of buckled beams to 1:1 and 3:1 internal resonances. Int. J. Non Linear Mech. 52, 12–25 (2013)

    Article  Google Scholar 

  24. Afaneh, A., Ibrahim, R.: Nonlinear response of an initially buckled beam with 1:1 internal resonance to sinusoidalbreak excitation. Nonlinear Dyn. 4(6), 547–571 (1993)

    Article  Google Scholar 

  25. Jiang, J., Mockensturm, E.: A motion amplifier using an axially driven buckling beam: II. Modeling and analysis. Nonlinear Dyn. 45(1–2), 1–14 (2006)

    Article  Google Scholar 

  26. Rega, G., Lacarbonara, W., Nayfeh, A., Chin, C.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non Linear Mech. 34(5), 901–924 (1999)

    Article  Google Scholar 

  27. Lacarbonara, W., Rega, G.: Resonant non-linear normal modes. Part II: activation/orthogonality conditions for shallow structural systems. Int. J. Non Linear Mech. 38(6), 873–887 (2003)

    Article  Google Scholar 

  28. Hajjaj, A.Z., Alfosail, F.K., Younis, M.I.: Two-to-one internal resonance of MEMS arch resonators. Int. J. Non Linear Mech. 107, 64–72 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.09.014

    Article  Google Scholar 

  29. Ouakad, H.M., Sedighi, H.M., Younis, M.I.: One-to-one and three-to-one internal resonances in MEMS shallow arches. J. Comput. Nonlinear Dyn. 12(5), 051025 (2017)

    Article  Google Scholar 

  30. Ouakad, H.M., Younis, M.I.: The dynamic behavior of MEMS arch resonators actuated electrically. Int. J. Non Linear Mech. 45(7), 704–713 (2010)

    Article  Google Scholar 

  31. Jaber, N., Ramini, A., Carreno, A.A., Younis, M.I.: Higher order modes excitation of electrostatically actuated clamped–clamped microbeams: experimental and analytical investigation. J. Micromech. Microeng. 26(2), 025008 (2016)

    Article  Google Scholar 

  32. Hajjaj, A.Z., Alfosail, F.K., Jaber, N., Ilyas, S., Younis, M.I.: Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator: part II—simultaneous 1:1 and 2:1 internal resonances. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-05242-9

    Article  Google Scholar 

  33. [Online].Polytec:http://www.polytec.com/us/. Accessed 2019

  34. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer, Berlin (2011)

    Book  Google Scholar 

  35. Okada, Y., Tokumaru, Y.: Precise determination of lattice-parameter and thermal-expansion coefficient of silicon between 300-K and 1500-K. J. Appl. Phys. 56(2), 314–320 (1984). https://doi.org/10.1063/1.333965

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad I. Younis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we present the procedure of solving the eigenvalue problem of the arch beam when varying the electrothermal and the DC bias voltages. The static deflection of the arch beam, due to \(V_\mathrm{Th}\) and \(V_\mathrm{DC}\), is governed by

$$\begin{aligned}&\frac{\mathrm{d}^{4}w_s }{\mathrm{d}x^{4}}=\left( \left( {\frac{\mathrm{d}^{2}w_s }{\mathrm{d}x^{2}}+\frac{\mathrm{d}^{2}w_0 }{\mathrm{d}x^{2}}} \right) \right. \nonumber \\&\quad \left. \left[ {N+\alpha _1 \int _0^1 {\left[ {\left( {\frac{\mathrm{d}w_s }{\mathrm{d}x}} \right) ^{2}+2\frac{\mathrm{d}w_s }{\mathrm{d}x}\frac{\mathrm{d}w_0 }{\mathrm{d}x}} \right] \mathrm{d}x} } \right] \right) \nonumber \\&\quad +\,\alpha _2 \frac{V_\mathrm{DC} ^{2}}{\left( {1-w_s -w_0 } \right) ^{2}}u(x-0.5) \end{aligned}$$
(A.1)

with the associated boundary conditions

$$\begin{aligned} w_s (0)=w_s (1)=0\hbox { and }\left. {\frac{\mathrm{d}w_s }{\mathrm{d}x}} \right| _{x=0} =\left. {\frac{\mathrm{d}w_s }{\mathrm{d}x}} \right| _{x=1} =0\nonumber \\ \end{aligned}$$
(A.2)

To solve the eigenvalue problem, we drop the AC bias voltage and the damping terms from the equation of motion (Eq. (8)). Next, we assume that the total deflection is the sum of the static configuration, \(w_{s}(x)\), and a small dynamic deflection of the arch beam, \(w_{d}(x,t)\), around \(w_{s}(x)\). The linearized equation of motion describing \(w_{d}(x,t)\) is derived by substituting \(w(x,t)=w_{d}(x,t)+w_{s}(x) \) into Eq. (8) and dropping the terms representing the equilibrium position and the nonlinear terms. This yields

$$\begin{aligned}&\frac{\partial ^{2}w_d }{\partial t^{2}}+\frac{\partial ^{4}w_d }{\partial x^{4}}\nonumber \\&\quad =\left[ {N+\alpha _1 \int _0^1 {\left[ {\left( {\frac{\mathrm{d}w_s }{\mathrm{d}x}} \right) ^{2}+2\frac{\mathrm{d}w_s }{\mathrm{d}x}\frac{\mathrm{d}w_0 }{\mathrm{d}x}} \right] dx} } \right] \frac{\partial ^{2}w_d }{\partial x^{2}} \nonumber \\&\quad \quad +\,2\alpha _1 \int _0^1 {\left[ {\left( {\frac{\mathrm{d}w_s }{\mathrm{d}x}+\frac{\mathrm{d}w_0 }{\mathrm{d}x}} \right) \frac{\partial w_d }{\partial x}} \right] \mathrm{d}x} \left( {\frac{\mathrm{d}^{2}w_s }{\mathrm{d}x^{2}}+\frac{\mathrm{d}^{2}w_0 }{\mathrm{d}x^{2}}} \right) \nonumber \\&\quad \quad +\,2\alpha _2 \frac{V_\mathrm{DC} ^{2}}{\left( {1-w_s -w_0 } \right) ^{3}}u(x-0.5)w_d \end{aligned}$$
(A.3)

with the associated boundary conditions

$$\begin{aligned}&w_d (0,t)=w_d (1,t)=0\nonumber \\&\quad \hbox { and }\left. {\frac{\partial w_d }{\partial x}} \right| _{x=0,t} =\left. {\frac{\partial w_d }{\partial x}} \right| _{x=1,t} =0 \end{aligned}$$
(A.4)

We solve the eigenvalue problem of the arch beam under electrothermal voltage and electrostatic voltage [15, 34] by using the Galerkin discretization. Toward this, we let

$$\begin{aligned} w_d (x,t)=\sum _{i=0}^n {u_i (t)\varphi _i (x)} \end{aligned}$$
(A.5)

where \(u_{i}{(t) (i=0,1,2\ldots n)}\) denotes the nondimensional modal coordinates and \({\varphi }_{i}(x) (i=0,1,2\ldots n)\) denotes the mode shape of the unactuated clamped–clamped arch beam. Next, we substitute Eq. (A.5) into Eq. (A.3), multiply the outcome by the mode shape \({\varphi }_{j}\) and integrate over the beam domain (from 0 to 1), which yield the below equation [15, 34]:

$$\begin{aligned} \ddot{u}_j= & {} -\int _0^1 {\varphi _j \left( {\sum _{i=0}^n {u_i \varphi _i ^{(iv)}} } \right) } \mathrm{d}x \nonumber \\&+\left[ N+\alpha _1 \int _0^1 \left[ \left( {\frac{\mathrm{d}w_s }{\mathrm{d}x}} \right) ^{2} \right. \right. \nonumber \\&+\,2\left. \left. \frac{\mathrm{d}w_s }{\mathrm{d}x}\frac{\mathrm{d}w_0 }{\mathrm{d}x} \right] \mathrm{d}x \right] \int _0^1 {\varphi _j \left( {\sum _{i=0}^n {u_i \varphi _i {\prime }{\prime }} } \right) } \mathrm{d}x \nonumber \\&+\,2\alpha _1 \int _0^1 {\left[ {\left( {\frac{dw_s }{\mathrm{d}x}+\frac{\mathrm{d}w_0 }{\mathrm{d}x}} \right) \sum _{i=0}^n {u_i \varphi _i {\prime }} } \right] \mathrm{d}x} \nonumber \\&\quad \quad \int _0^1 {\varphi _j \left( {\frac{\mathrm{d}^{2}w_s }{\mathrm{d}x^{2}}+\frac{\mathrm{d}^{2}w_0 }{\mathrm{d}x^{2}}} \right) \mathrm{d}x} \nonumber \\&+\int _0^1 {\varphi _j \frac{2\alpha _2 V_\mathrm{DC} ^{2}}{\left( {1-w_s -w_0 } \right) ^{3}}\left( {\sum _{i=0}^n {u_i \varphi _i } } \right) u(x-0.5)\mathrm{d}x}\nonumber \\ \end{aligned}$$
(A.6)

Using four modes, we compute the Jacobian of the system of the four obtained equations, for each \(V_\mathrm{Th}\) and \(V_\mathrm{DC}\), and find the corresponding eigenvalues and eigenvectors (new mode shapes). Then, we compute the natural frequencies of the resonators, at constant \(V_\mathrm{Th}\) and \(V_\mathrm{DC}\), by taking the square root of these eigenvalues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajjaj, A.Z., Alfosail, F.K., Jaber, N. et al. Theoretical and experimental investigations of the crossover phenomenon in micromachined arch resonator: part I—linear problem. Nonlinear Dyn 99, 393–405 (2020). https://doi.org/10.1007/s11071-019-05251-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05251-8

Keywords

Navigation