Skip to main content
Log in

Emergent preeminence of selfishness: an anomalous Parrondo perspective

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A minimalistic multi-agent Parrondo’s game structure with branching dependent on local capital spread was previously introduced, indicating that stochastically mixing two losing games can produce winning outcomes with bounded capital variance among players. Using a similar game structure, we unveil further intriguing behavior that a bias toward selfish exploitative behavior, involving redistribution of capital from the poor to the rich, leads to counterintuitive superior capital gains than cooperative behaviors. Inter-agent interactions of exploitative nature not only maximizes capital growth in winning scenarios, but also expands the parameter space over which the Parrondo effect may manifest. These novel findings suggest a link between growth maximization and inequality that could be relevant to socioeconomic, ecological, and population dynamics modeling. We also present a theoretical framework for enhanced accuracy in the prediction of ensemble capital statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. West, S.A., Gardner, A., Shuker, D.M., Reynolds, T., Burton-Chellow, M., Sykes, E.M., Guinnee, M.A., Griffin, A.S.: Cooperation and the scale of competition in humans. Curr. Biol. 16, 1103 (2006)

    Google Scholar 

  2. Wilson, D.S., Near, D.C., Miller, R.R.: Individual differences in machiavellianism as a mix of cooperative and exploitative strategies. Evol. Hum. Behav. 19, 203 (1998)

    Google Scholar 

  3. Simon, H.A.: Theories of decision-making in economics and behavioral science. Am. Econ. Rev. 49, 253 (1959)

    Google Scholar 

  4. Smith, J.M.: Game theory and the evolution of behaviour. Behav. Brain Sci. 7, 95 (1984)

    Google Scholar 

  5. Harmer, G.P., Abbott, D.: Losing strategies can win by Parrondo’s paradox. Nature 402, 864 (1999a)

    Google Scholar 

  6. Harmer, G.P., Abbott, D.: Parrondo’s paradox. Stat. Sci. 14, 206 (1999b)

    MathSciNet  MATH  Google Scholar 

  7. Parrondo, J.M.R., Harmer, G.P., Abbott, D.: New paradoxical games based on Brownian ratchets. Phys. Rev. Lett. 85, 5226 (2000)

    Google Scholar 

  8. Ajdari, A., Prost, J.: Drift induced by a periodic potential of low symmetry: pulsed dielectrophoresis. C. R. Acad. Sci. Paris Sér. 315, 1635 (1993)

    Google Scholar 

  9. Rousselet, J., Salome, L., Ajdari, A., Prostt, J.: Directional motion of brownian particles induced by a periodic asymmetric potential. Nature 370, 446 (1994)

    Google Scholar 

  10. Cao, F.J., Dinis, L., Parrondo, J.M.R.: Feedback control in a collective flashing ratchet. Phys. Rev. Lett. 93, 040603 (2004)

    Google Scholar 

  11. Toral, R.: Cooperative Parrondo’s games. Fluct. Noise Lett. 01, L7 (2001)

    MathSciNet  Google Scholar 

  12. Toral, R.: Capital redistribution brings wealth by Parrondo’s paradox. Fluct. Noise Lett. 02, L305 (2002)

    MathSciNet  Google Scholar 

  13. Danca, M.-F., Fečkan, M., Romera, M.: Generalized form of Parrondo’s paradoxical game with applications to chaos control. Int. J. Bifurc. Chaos 24, 1450008 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Chau, N.P.: Controlling chaos by periodic proportional pulses. Phys. Lett. A 234, 193 (1997)

    Google Scholar 

  15. Allison, A., Abbott, D.: Control systems with stochastic feedback. Chaos 11, 715 (2001)

    MATH  Google Scholar 

  16. Danca, M.-F., Lai, D.: Parrodo’s game model to find numerically stable attractors of a tumour growth model. Int J Bifurc Chaos 22, 1250258 (2012)

    MATH  Google Scholar 

  17. Danca, M.-F., Tang, W.K.S.: Parrondo’s paradox for chaos control and anticontrol of fractional-order systems. Chin. Phys. B 25, 010505 (2016)

    Google Scholar 

  18. Rosato, A., Strandburg, K.J., Prinz, F., Swendsen, R.H.: Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038 (1987)

    MathSciNet  Google Scholar 

  19. Pinsky, R., Scheutzow, M.: Some remarks and examples concerning the transient and recurrence of random diffusions. Ann. Inst. Henri Poincaré B 28, 519 (1992)

    MATH  Google Scholar 

  20. Harmer, G.P., Abbott, D., Taylor, P.G., Pearce, C.E.M., Parrondo, J.M.R.: Information entropy and Parrondo’s discrete-time ratchet. AIP Conf. Proc. 502, 544 (2000)

    MATH  Google Scholar 

  21. Pearce, C.E.M.: Entropy, Markov information sources and Parrondo games. AIP Conf. Proc. 511, 207 (2000)

    Google Scholar 

  22. Cheong, K.H., Saakian, D.B., Zadourian, R.: Allison mixture and the two-envelope problem. Phys. Rev. E 96, 062303 (2017)

    Google Scholar 

  23. Wolf, D.M., Vazirani, V.V., Arkin, A.P.: Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol. 234, 227 (2005)

    MathSciNet  Google Scholar 

  24. Libby, E., Conlin, P.L., Kerr, B., Ratcliff, W.C.: Stabilizing multicellularity through ratcheting. Philos. Trans. R. Soc. B 371 (2016). https://doi.org/10.1098/rstb.2015.0444

    Google Scholar 

  25. Cheong, K.H., Tan, Z.X., Xie, N.-G., Jones, M.C.: A paradoxical evolutionary mechanism in stochastically switching environments. Sci. Rep. 6, 34889 (2016). https://doi.org/10.1038/srep34889

    Article  Google Scholar 

  26. Tan, Z.X., Cheong, K.H.: Nomadic-colonial life strategies enable paradoxical survival and growth despite habitat destruction. eLife 6, e21673 (2017). https://doi.org/10.7554/eLife.21673

    Article  Google Scholar 

  27. Koh, J.M., Xie, N.-G., Cheong, K.H.: Nomadic-colonial switching with stochastic noise: subsidence-recovery cycles and long-term growth. Nonlinear Dyn. 94, 1467 (2018)

    Google Scholar 

  28. Cheong, K.H., Koh, J.M., Jones, M.C.: Multicellular survival as a consequence of parrondo’s paradox. Proc. Natl. Acad. Sci 115, E5258–E5259 (2018). https://www.pnas.org/content/115/23/E5258

    Google Scholar 

  29. Cheong, K.H., Koh, J.M., Jones, M.C.: Paradoxical survival: Examining the parrondo effect across biology. BioEssays 41, 1900027 (2019). https://doi.org/10.1002/bies.201900027

    Article  Google Scholar 

  30. Meyer, D.A., Blumer, H.: Parrondo games as lattice gas automata. J. Stat. Phys. 107, 225 (2002)

    MATH  Google Scholar 

  31. Flitney, A.P., Abbott, D., Johnson, N.F.: Quantum walks with history dependence. J. Phys. A Math. Gen. 37, 7581 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Rajendran, J., Benjamin, C.: Implementing Parrondo’s paradox with two-coin quantum walks. Open Sci. (2018). https://doi.org/10.1098/rsos.171599. http://rsos.royalsocietypublishing.org/content/5/2/171599.full.pdf

    Google Scholar 

  33. Rajendran, J., Benjamin, C.: Playing a true Parrondo’s game with a three-state coin on a quantum walk. EPL (Europhys. Lett.) 122, 40004 (2018)

    Google Scholar 

  34. Flitney, A.P., Abbott, D.: Quantum models of Parrondo’s games. Phys. A 324, 152 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Flitney, A.P., Abbott, D.: An introduction to quantum game theory. Fluct. Noise Lett. 02, R175 (2002)

    MathSciNet  Google Scholar 

  36. Lee, C.F., Johnson, N.F., Rodriguez, F., Quiroga, L.: Quantum coherence, correlated noise and Parrondo Games. Fluct. Noise Lett. 02, L293 (2002)

    MathSciNet  Google Scholar 

  37. Lee, C.F., Johnson, N.F.: Exploiting randomness in quantum information processing. Phys. Lett. A 301, 343 (2002)

    MathSciNet  MATH  Google Scholar 

  38. Banerjee, S., Chandrashekar, C.M., Pati, A.K.: Enhancement of geometric phase by frustration of decoherence: a Parrondo-like effect. Phys. Rev. A 87, 042119 (2013)

    Google Scholar 

  39. de Franciscis, S., d’Onofrio, A.: Spatiotemporal bounded noises and transitions induced by them in solutions of the real Ginzburg–Landau model. Phys. Rev. E 86, 021118 (2012)

    Google Scholar 

  40. Pejic, M.: Quantum Bayesian networks with application to games displaying Parrondo’s paradox. (2015), ArXiv e-prints arXiv:1503.08868

  41. Di Crescenzo, A.: A Parrondo paradox in reliability theory. Math. Sci. 32, 17 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, Y., Luo, G.: A special type of codimension two bifurcation and unusual dynamics in a phase-modulated system with switched strategy. Nonlinear Dyn. 67, 2727–2734 (2012)

    MathSciNet  Google Scholar 

  43. Zhang, Y.: Switching-induced Wada basin boundaries in the Hénon map. Nonlinear Dyn. 73, 2221–2229 (2013)

    MATH  Google Scholar 

  44. Danca, M.-F.: Convergence of a parameter switching algorithm for a class of nonlinear continuous systems and a generalization of Parrondo’s paradox. Commun. Nonlinear Sci. Numer. Simul. 18, 500–510 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Koh, J.M., Cheong, K.H.: Automated electron-optical system optimization through switching Levenberg–Marquardt algorithms. J. Electron Spectrosc. Relat. Phenom. 227, 31 (2018)

    Google Scholar 

  46. Koh, J.M., Cheong, K.H.: New doubly-anomalous Parrondo’s games suggest emergent sustainability and inequality. Nonlinear Dyn. 96, 257 (2019)

    Google Scholar 

  47. Triandis, H.C.: Individualism–Collectivism and Personality. J. Personal. 69, 907 (2001)

    Google Scholar 

  48. Hui, C.H.: Measurement of individualism–collectivism. J. Res. Personal. 22, 17 (1988)

    Google Scholar 

  49. Mihailovic, Z., Rajkovic, M.: Synchronous cooperative Parrondo’s games. Fluct. Noise Lett. 03, 389 (2003)

    MathSciNet  Google Scholar 

  50. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)

    MathSciNet  MATH  Google Scholar 

  51. Barabási, A.-L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Phys. A 272, 173 (1999)

    Google Scholar 

  52. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

    Google Scholar 

  53. Kasthurirathna, D., Piraveenan, M.: Emergence of scale-free characteristics in socio-ecological systems with bounded rationality. Sci. Rep. 5, 10448 (2015)

    Google Scholar 

  54. Gao, J., Barzel, B., Barabasi, A.L.: Universal resilience patterns in complex networks. Nature 530, 307 (2016)

    Google Scholar 

  55. Amaral, L.A.N., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. 97, 11149 (2000)

    Google Scholar 

  56. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debr. 6, 290 (1959)

    MATH  Google Scholar 

  57. Gómez-Gardeñes, J., Moreno, Y.: From scale-free to Erdos–Rényi networks. Phys. Rev. E 73, 056124 (2006)

    Google Scholar 

  58. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440 (1998)

    MATH  Google Scholar 

  59. Ye, Y., Cheong, K.H., Cen, Y.-W., Xie, N.-G.: Effects of behavioral patterns and network topology structures on Parrondo’s paradox. Sci. Rep. 6, 37028 (2016). https://doi.org/10.1038/srep37028

    Article  Google Scholar 

  60. Miller, S., Diamond, J.: A new world of differences. Nature 441, 411 (2006)

    Google Scholar 

  61. Sargent, M.: Why inequality is fatal. Nature 458, 1109 (2009)

    Google Scholar 

  62. Bechhoefer, J.: Feedback for physicists: a tutorial essay on control. Rev. Mod. Phys. 77, 783 (2005)

    Google Scholar 

  63. Saavedra, S., Reed-Tsochas, F., Uzzi, B.: A simple model of bipartite cooperation for ecological and organizational networks. Nature 457, 463 (2008)

    Google Scholar 

Download references

Acknowledgements

This project was supported by the SUTD Start-up Research Grant (SRG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Hao Cheong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 252 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, J.M., Cheong, K.H. Emergent preeminence of selfishness: an anomalous Parrondo perspective. Nonlinear Dyn 98, 943–951 (2019). https://doi.org/10.1007/s11071-019-05237-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05237-6

Keywords

Navigation