Skip to main content
Log in

A Wong–Zakai approximation for random slow manifolds with application to parameter estimation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study a Wong–Zakai approximation for the random slow manifold of a slow–fast stochastic dynamical system. We first deduce the existence of the random slow manifold about an approximation system driven by an integrated Ornstein–Uhlenbeck process. Then, we compute the slow manifold of the approximation system, in order to gain insights of the long time dynamics of the original stochastic system. By restricting this approximation system to its slow manifold, we thus get a reduced slow random system. This reduced slow random system is used to accurately estimate a system parameter of the original system. An example is presented to illustrate this approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Arnold, L.: Random Dynamical Systems. Springer, New York (1998)

    Book  MATH  Google Scholar 

  2. Acquistapace, P., Terreni, B.: An approach to Ito linear equations in Hilbert spaces by approximation of white noise with coloured noise. Stoch. Anal. Appl. 2, 131–186 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Al-azzawi, S., Liu, J., Liu, X.: Convergence rate of synchronization of systems with additive noise. Discrete Contin. Dyn. Syst. Ser. B 22(2), 227–245 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bouchet, F., Grafke, T., Tangarife, T., Vanden-Eijnden, E.: Large deviations in fast–slow systems. J. Stat. Phys. 162(4), 793–812 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brzeźniak, Z., Flandoli, F.: Almost sure approximation of Wong–Zakai type for stochastic partial differential equations. Stoch. Process. Their Appl. 55(2), 329–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brzeźniak, Z., Capiński, M., Flandoli, F.: A convergence result for stochastic partial differential equations. Stochastics 24(4), 423–445 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berglund, N., Gentz, B.: Noise-Induced Phenomena in Slow–Fast Dynamical Systems: A Sample-Paths Approach. Springer, London (2006)

    MATH  Google Scholar 

  8. Bibbona, E., Panfilo, G., Tavella, P.: The Ornstein–Uhlenbeck process as a model of a low pass filtered white noise. Metrologia 45(6), S117–S126 (2008)

    Article  MathSciNet  Google Scholar 

  9. Blass, T., Romero, L.A.: Stability of ordinary differential equations with colored noise. SIAM J. Control Optim. 51(2), 1099–1127 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  11. Cucker, F., Pinkus, A., Todd, M.J.: Foundations of Computational Mathematics, Hong Kong, 2008. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  12. Chueshov, I., Schmalfuss, B.: Master–slave synchronization and invariant manifolds for coupled stochastic systems. J. Math. Phys. 51(10), 13–17 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duan, J.: An Introduction to Stochastic Dynamics. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  14. Duan, J., Wang, W.: Effective Dynamics of Stochastic Partial Differential Equations. Elsevier, London (2014)

    MATH  Google Scholar 

  15. Duan, J., Lu, K., Schmalfuss, B.: Invariant manifolds for stochastic partial differential equations. Ann. Probab. 31(4), 2109–2135 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duan, J., Lu, K., Schmalfuss, B.: Smooth stable and unstable manifolds for stochastic evolutionary equations. J. Dyn. Differ. Equ. 16(4), 949–972 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Du, Q., Zhang, T.: Numerical approximation of some linear stochastic partial differential equations driven by special additive noises. SIAM J. Numer. Anal. 40(4), 1421–1445 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fu, H., Liu, X., Duan, J.: Slow manifold for multi-time-scale stochastic evolutionary systems. Commun. Math. Sci. 11(1), 141–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gyöngy, I.: On the approximations of stochastic partial differential equations I. Stochastics 25(2), 59–85 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gyöngy, I.: On the approximation of stochastic partial differential equations II. Stochastics 26(3), 129–164 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Goussis, D.A.: The role of slow system dynamics in predicting the degeneracy of slow invariant manifolds: the case of vdP relaxation–oscillations. Physica D 248, 16–32 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hairer, M., Pardoux, É.: A Wong–Zakai theorem for stochastic PDEs. J. Math. Soc. Jpn. 67(4), 1551–1640 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Han, X., Najm, H.N.: Dynamical structures in stochastic chemical reaction systems. SIAM J. Appl. Dyn. Syst. 13(3), 1328–1351 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Horsthemke W., Lefever, R.: Noise-induced transitions: theory and applications in physics, chemistry, and biology. In: Springer Series in Synergetics, vol. 15. Springer, Berlin (1984)

  25. Hintze, R., Pavlyukevich, I.: Small noise asymptotics and first passage times of integrated Ornstein–Uhlenbeck processes driven by \(\alpha \)-stable Lévy processes. Bernoulli 20(1), 265–281 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Istvan, G., Anton, S.: Rate of convergence of Wong–Zakai approximations for stochastic partial differential equations. Appl. Math. Optim. 54(3), 341–341 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiang, T., Liu, X., Duan, J.: Approximation for random stable manifolds under multiplicative correlated noises. Discrete Contin. Dyn. Syst. Ser. B 21(9), 3163–3174 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuehn, C.: Multiple Time Scale Dynamics. Springer, New York (2015)

    Book  MATH  Google Scholar 

  29. Kan, X., Duan, J., Kevrekidis, G., Roberts, J.: Simulating stochastic inertial manifolds by a backward–forward approach. SIAM J. Appl. Dyn. Syst. 12(1), 487–514 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kamrani, M.: Convergence of a numerical scheme for SPDEs with correlated noise and global Lipschitz coefficients. Math. Methods Appl. Sci. 39, 2993–3004 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Karatzas, L., Shreve, S.E.: Brownian motion and stochastic calculus, 2nd edn. Springer, Berlin (1991)

    MATH  Google Scholar 

  32. Kazakevičius, R., Ruseckas, J.: Power law statistics in the velocity fluctuations of Brownian particle in inhomogeneous media and driven by colored noise. J. Stat. Mech. Theory Exp. 2015, P02021 (2015)

    Article  MathSciNet  Google Scholar 

  33. Kloeden, P.E., Jentzen, A.: Pathwise convergent higher order numerical schemes for random ordinary differential equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 463, 2929–2944 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Leith, C.E.: Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci. 37(5), 958–968 (1980)

    Article  MathSciNet  Google Scholar 

  35. Lorenz, E.: On the existence of a slow manifold. J. Atmos. Sci. 43(15), 1547–1557 (1986)

    Article  MathSciNet  Google Scholar 

  36. Lorenz, E.: The slow manifold—what is it? J. Atmos. Sci. 49(24), 2449–2451 (1992)

    Article  MathSciNet  Google Scholar 

  37. Meiss, J.: Differential Dynamical Systems. Society for Industrial and Applied Mathematics, Philadelphia (2007)

    Book  MATH  Google Scholar 

  38. Protter, P.E.: Stochastic Integration and Differential Equations. Springer, Berlin (2005)

    Book  Google Scholar 

  39. Ren, J., Duan, J., Wang, X.: A parameter estimation method based on random slow manifolds. Appl. Math. Model. 39, 3721–3732 (2015)

    Article  MathSciNet  Google Scholar 

  40. Ren, J., Duan, J., Jones, C.: Approximation of random slow manifolds and settling of inertial particles under uncertainty. J. Dyn. Differ. Equ. 27, 961–979 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schmalfuss, B., Schneider, K.: Invariant manifolds for random dynamical systems with slow and fast variables. J. Dyn. Differ. Equ. 20(1), 133–164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Twardowska, K.: Wong–Zakai approximation of stochastic differential equations. Acta Appl. Math. 43(3), 317–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the Brownian motion. Phys. Rev. 36, 823–841 (1930)

    Article  MATH  Google Scholar 

  44. Wong, E., Zakai, M.: On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Stat. 36(5), 1560–1564 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wong, E., Zakai, M.: On the relation between ordinary and stochastic differential equations. Int. J. Eng. Sci. 3(2), 213–229 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11531006, 11771449 and 11971186). The authors thank Xiujun Cheng, Jian Ren and Xiaoli Chen for useful discussions about the program for parameter estimation, and Hua Zhang for pointing out the theoretical basis about the computation of stochastic integration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianming Liu.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Zhang, X., Jiang, T. et al. A Wong–Zakai approximation for random slow manifolds with application to parameter estimation. Nonlinear Dyn 98, 403–426 (2019). https://doi.org/10.1007/s11071-019-05201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05201-4

Keywords

Navigation