Skip to main content
Log in

Dynamic and steady analysis of a 2-DOF vehicle system by modified incremental harmonic balance method

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, the dynamic response and stability of two-degree-of-freedom vehicle system subjected to an external excitation force with quadratic and cubic nonlinearities simultaneous are researched, and the differential equations of motion are deduced by utilizing the mechanical constitutive relationship. The accuracy of the model and the efficiency of modified incremental harmonic balance method are compared and verified with literature and numerical simulation results. Then the parameter researches of the system are carried out to investigate the influences of the mass ratio, excitation amplitude and nonlinear stiffness ratio of tire on the nonlinear characteristics and steady-state responses by amplitude–frequency curves, which have different level of influences on the dynamic responses of the vehicle system. Depending on the different control parameters, the system displays rich and varied behaviors including the jump discontinuity, multiple solution properties, super-harmonic resonance and softening/hardening-type nonlinearity, which are attributed to the strong nonlinearity and dynamical coupling characteristics of the vehicle system. Besides, the two remarkable resonance peaks and different branching paths between steady-state solution and unsteady-state solution are observed. The contributions of this study can provide valuable information to optimize and control the vehicle system, and be helpful for knowing more about nonlinear dynamic behaviors and stability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yang, S.P., Lu, Y.J., Li, S.H.: An overview on vehicle dynamics. Int. J. Dyn. Control 1(4), 385–395 (2013)

    Article  Google Scholar 

  2. Sheng, Y., Wu, G.Q.: Chaos research on vehicle nonlinear suspension system. Autom. Eng. 30(1), 57–60 (2008)

    MathSciNet  Google Scholar 

  3. Yang, S.P., Li, S.H., Lu, Y.J.: Investigation on dynamical interaction between a heavy vehicle and road pavement. Veh. Syst. Dyn. 48(8), 923–944 (2010)

    Article  Google Scholar 

  4. Borowiec, M., Grzegorz, G.: Transition to chaos and escape phenomenon in two-degrees-of-freedom oscillator with a kinematic excitation. Nonlinear Dyn. 70(2), 1125–1133 (2012)

    Article  Google Scholar 

  5. Litak, G., Borowiec, M., Ali, M., Saha, L.M., Friswell, M.I.: Pulsive feedback control of a quarter car model forced by a road profile. Chaos Soliton Fractals 33(5), 1672–1676 (2007)

    Article  Google Scholar 

  6. Prabakar, R.S., Sujatha, C., Narayanan, S.: Response of a quarter car model with optimal magnetorheological damper parameters. J. Sound Vib. 332(9), 2191–2206 (2013)

    Article  Google Scholar 

  7. Prabakar, R.S., Sujatha, C., Narayanan, S.: Response of a half-car model with optimal magnetorheological damper parameters. J. Vib. Control 22(3), 784–798 (2016)

    Article  MathSciNet  Google Scholar 

  8. Siewe, M.S.: Resonance, stability and period-doubling bifurcation of a quarter-car model excited by the road surface profile. Phys. Lett. 374(13–14), 1469–1476 (2010)

    Article  Google Scholar 

  9. Wu, C., Wang, W.R., Xu, B.H., Li, X.L., Jiang, W.G.: Chaotic behavior of hysteretic suspension model excited by road surface profile. J. Zhejiang Univ. Eng. Sci. 45(7), 1259–1264 (2011)

    Google Scholar 

  10. Papalukopoulos, C., Natsiavas, S.: Nonlinear biodynamics of passengers coupled with quarter car models. J. Sound Vib. 304(1–2), 50–71 (2007)

    Article  Google Scholar 

  11. Naik, R.D., Singru, P.M.: Resonance, stability and chaotic vibration of a quarter-car vehicle model with time-delay feedback. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3397–3410 (2011)

    Article  Google Scholar 

  12. Jayachandran, R., Krishnapillai, S.: Modeling and optimization of passive and semi-active suspension systems for passenger cars to improve ride comfort and isolate engine vibration. J. Vib. Control 19(10), 1471–1479 (2012)

    Article  Google Scholar 

  13. ElMadany, M.M.: Quadratic synthesis of active controls for a quarter-car model. J. Vib. Control 7(8), 1237–1252 (2001)

    Article  Google Scholar 

  14. ElMadany, M.M.: Dynamic analysis of a slow-active suspension system based on a full car model. J. Vib. Control 17(1), 39–53 (2011)

    Article  MathSciNet  Google Scholar 

  15. Onat, C., Kucukdemiral, I.B., Sivrioglu, S., Yuksek, I., Cansever, G.: Lpv gain-scheduling controller design for a non-linear quarter-vehicle active suspension system. Trans. Inst. Meas. Control 31(1), 71–95 (2009)

    Article  Google Scholar 

  16. Marzbanrad, J., Keshavarzi, A.: Chaotic vibrations of a nonlinear air suspension system under consecutive half sine speed bump. Indian J. Sci. Technol. 8(S3), 72–84 (2015)

    Article  Google Scholar 

  17. Soong, M.F., Ramli, R., Mahadi, W.N.L.: Using gear mechanism in vehicle suspension as a method of altering suspension characteristic. J. Vib. Control 21(11), 2187–2199 (2015)

    Article  Google Scholar 

  18. Liang, S., Li, C.G., Zhu, Q.: The influence of parameters of consecutive speed control humps on the chaotic vibration of a 2-DOF nonlinear vehicle model. J. Vibroeng. 13(3), 406–413 (2011)

    Google Scholar 

  19. Liu, F., Liang, S., Zhu, Q., Xiong, Q.Y.: Effects of the consecutive speed humps on chaotic vibration of a nonlinear vehicle model. ICIC Express Lett. 4(5), 1657–1664 (2010)

    Google Scholar 

  20. Łuczko, J., Ferdek, U.: Non-linear analysis of a quarter-car model with stroke-dependent twin-tube shock absorber. Mech. Syst. Signal Process. 115, 450–468 (2019)

    Article  Google Scholar 

  21. Rajalingham, C., Rakheja, S.: Influence of suspension damper asymmetry on vehicle vibration response to ground excitation. J. Sound Vib. 266(5), 1117–1129 (2003)

    Article  Google Scholar 

  22. Demir, O., Keskin, I., Cetin, S.: Modeling and control of a nonlinear half-vehicle suspension system: a hybrid fuzzy logic approach. Nonlinear Dyn. 67(3), 2139–2151 (2012)

    Article  Google Scholar 

  23. Azimi, H., Galal, K., Pekau, O.A.: A numerical element for vehicle-bridge interaction analysis of vehicles experiencing sudden deceleration. Eng. Struct. 49, 792–805 (2013)

    Article  Google Scholar 

  24. Sezgin, A., Arslan, Y.Z.: Analysis of the vertical vibration effects on ride comfort of vehicle driver. J. Vibroeng. 14(2), 559–571 (2012)

    Google Scholar 

  25. Taffo, G.I.K., Siewe, M.S.: Parametric resonance, stability and heteroclinic bifurcation in a nonlinear oscillator with time-delay: application to a quarter-car model. Mech. Res. Commun. 52, 1–10 (2013)

    Article  Google Scholar 

  26. Taffo, G.I.K., Siewe, M.S., Tchawoua, C.: Stability switches and bifurcation in a two-degrees-of-freedom nonlinear quarter-car with small time-delayed feedback control. Chaos Soliton Fractals 87, 226–239 (2016)

    Article  MathSciNet  Google Scholar 

  27. Li, P., Lam, J., Cheung, K.C.: Multi-objective control for active vehicle suspension with wheelbase preview. J. Sound Vib. 333(21), 5269–5282 (2016)

    Article  Google Scholar 

  28. Zhang, J.H., Guo, P., Lin, J.W., Wang, K.N.: A mathematical model for coupled vibration system of road vehicle and coupling effect analysis. Appl. Math. Model. 40(2), 1199–1217 (2016)

    Article  MathSciNet  Google Scholar 

  29. Sheng, Y., Wu, G.Q.: Quantitative study of automotive nonlinear suspension system based on incremental harmonic balance method. J. TongJi Univ. (Nat. Sci.) 39(3), 405–410 (2011)

    Google Scholar 

  30. Silveira, M., Wahi, P., Fernandes, J.C.M.: Effects of asymmetrical damping on a 2 DOF quarter-car model under harmonic excitation. Commun. Nonlinear Sci. Numer. Simul. 43, 14–24 (2017)

    Article  MathSciNet  Google Scholar 

  31. Silveira, M.P., Fernandes, J.C.M.: Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles. J. Sound Vib. 333(7), 2114–2129 (2014)

    Article  Google Scholar 

  32. Zhu, S.J., Zheng, Y.F., Fu, Y.M.: Analysis of non-linear dynamics of a two-degree-of-freedom vibration system with non-linear damping and non-linear spring. J. Sound Vib. 271(1–2), 15–24 (2004)

    Article  Google Scholar 

  33. Zhou, S.H., Song, G.Q., Sun, M.N., Ren, Z.H.: Nonlinear dynamic analysis of a quarter vehicle system with external periodic excitation. Int. J. Non-linear Mech. 84, 82–93 (2016)

    Article  Google Scholar 

  34. Wang, S., Hua, L., Yang, C., Zhang, Y.O., Tan, X.D.: Nonlinear vibrations of a piecewise-linear quarter-car truck model by incremental harmonic balance method. Nonlinear Dyn. 92(5), 1719–1732 (2018)

    Article  Google Scholar 

  35. Zhou, S.H., Guiqiu Song, G.Q., Sun, M.N., Ren, Z.H., Wen, B.C.: Dynamic interaction of monowheel inclined vehicle-vibration platform coupled system with quadratic and cubic nonlinearities. Mech. Syst. Signal Process. 412, 74–94 (2018)

    Google Scholar 

  36. Kane, T.T., Man, G.G.K.: The importance of slip law nonlinearity in the theory of steady turning of automobiles. Mech. Res. Commun. 4(5), 315–320 (1977)

    Article  Google Scholar 

  37. Wu, G.Q., Sheng, Y.: Review on the application of chaos theory in automobile nonlinear system. J. Mech. Eng. 46(10), 81–87 (2010)

    Article  Google Scholar 

  38. Liu, R.X.: Study of tractor tire stiffness and damping characteristics. Trans. Chin. Soc. Agric. Mach. 2, 17–24 (1988)

    Google Scholar 

  39. Qiu, X.D., Ji, X.W., Wang, Z.H., Zhuang, J.D.: Study on non-linear characteristics of tire stiffness. J. Jilin Univ. Technol. 24(4), 9–15 (1994)

    Google Scholar 

  40. Ji, X.W., Gao, Y.M., Qiu, X.D., Li, Y.D., Zhuang, J.D.: The dynamic stiffness and damping characteristics of the tire. Automot. Eng. 16(5), 315–320 (1994)

    Google Scholar 

  41. Wang, S., Hua, H., Yang, C., Han, X.H., Su, Z.Y.: Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems. J. Sound Vib. 441, 111–125 (2019)

    Article  Google Scholar 

  42. Ferreiar, J.V., Serpa, A.L.: Application of the arc-length method in nonlinear frequency response. J. Sound Vib. 284(1–2), 133–149 (2005)

    Article  Google Scholar 

  43. Leung, A.Y.T., Chui, S.K.: Non-linear vibration of coupled duffing oscillators by an improved incremental harmonic balance method. J. Sound Vib. 181(4), 619–633 (1995)

    Article  MathSciNet  Google Scholar 

  44. Cheung, Y.K., Chen, S.H.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140(2), 273–286 (1990)

    Article  Google Scholar 

  45. Huang, J.L., Su, R.K.L., Li, W.H., Chen, S.H.: Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances. J. Sound Vib. 330(3), 471–485 (2011)

    Article  Google Scholar 

  46. Kong, X.X., Sun, W., Wang, B., Wen, B.C.: Dynamic and stability analysis of the linear guide with time-varying, piecewise-nonlinear stiffness by multi-term incremental harmonic balance method. J. Sound Vib. 346, 265–283 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The project is supported by Natural Science Foundation of China (No. 51805075), Natural Science Foundation of Liaoning Province (No. 20180551094) and the Fundamental Research Funds for the Central Universities (No. N180304018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihua Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Song, G., Li, Y. et al. Dynamic and steady analysis of a 2-DOF vehicle system by modified incremental harmonic balance method. Nonlinear Dyn 98, 75–94 (2019). https://doi.org/10.1007/s11071-019-05172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05172-6

Keywords

Navigation