Skip to main content
Log in

Nonlinear vibration of axially moving beams with internal resonance, speed-dependent tension, and tension-dependent speed

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new nonlinear model of an axially accelerating viscoelastic beam is established. The effects of a speed-dependent tension (a time-dependent tension due to perturbation of the speed) and a tension-dependent speed (a time-dependent speed due to perturbation of the tension) are highlighted. However, there was one common characteristic in previous studies about parametric vibration of axially moving beams with time-dependent tensions and time-dependent speeds: Axial tension and axial speed are independent of each other. Another highlight is that the inhomogeneous boundary conditions arising from Kelvin viscoelastic constitutive relation are taken into account. The technique of the modified solvability conditions is employed to resolve the existing solvability conditions failure because of the inhomogeneous boundary conditions. The influences of material’s viscoelastic coefficients, axial speed fluctuation amplitude, axial tension fluctuation amplitude, and dependent and independent models on the steady-state vibration responses are demonstrated by some numerical examples. Furthermore, the approximate analytical results are verified by using the differential quadrature method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Miranker, W.L.: The wave equation in a medium in motion. IBM J. Res. Dev. 4, 36–42 (1960)

    MathSciNet  MATH  Google Scholar 

  2. Mote Jr., C.D.: Parametric excitation of an axially moving string. ASME J. Appl. Mech. 35(1), 171–172 (1968)

    Google Scholar 

  3. Fung, R.F., Huang, J.S., Yeh, J.Y.: Nonlinear dynamic stability of a moving string by Hamiltonian formulation. Comput. Struct. 66(5), 597–612 (1998)

    MATH  Google Scholar 

  4. Zhang, L., Zu, J.W.: Nonlinear vibration of parametrically excited moving belts, part I: dynamic response. ASME J. Appl. Mech. 66(2), 396–402 (1999)

    Google Scholar 

  5. Liu, Z.S., Huang, C.: Evaluation of the parametric instability of an axially translating media using a variational principle. J. Sound Vib. 257(5), 985–995 (2002)

    MathSciNet  Google Scholar 

  6. Zhang, W., Wen, H.B., Yao, M.H.: Periodic and chaotic oscillation of a parametrically excited viscoelastic moving belt with 1:3 internal resonance. Acta Mech. Sin. 36(4), 443–454 (2004)

    Google Scholar 

  7. Marynowski, K.: Non-linear vibrations of an axially moving viscoelastic web with time-dependent tension. Chaos Solitons Fractals 21(2), 480–490 (2004)

    MATH  Google Scholar 

  8. Marynowski, K.: Non-linear vibrations of the axially moving paper web. J. Theor. Appl. Mech. Pol. 46, 565–580 (2008)

    Google Scholar 

  9. Marynowski, K., Kapitaniak, T.: Zener internal damping in modelling of axially moving viscoelastic beam with time-dependent tension. Int. J. Nonlinear Mech. 42(1), 118–131 (2007)

    MATH  Google Scholar 

  10. Li, Y.G.: Dynamic stability of an axially moving yarn with time-dependent tension. Adv. Mater. Res. 900, 753–756 (2014)

    Google Scholar 

  11. Pellicano, F., Fregolent, A., Bertuzzi, A., Vestroni, F.: Primary and parametric non-linear resonances of a power transmission belt: experimental and theoretical analysis. J. Sound Vib. 244(4), 669–684 (2001)

    Google Scholar 

  12. Pellicano, F., Catellani, G., Fregolent, A.: Parametric instability of belts: theory and experiments. Comput. Struct. 82(1), 81–91 (2004)

    Google Scholar 

  13. Pellicano, F.: On the dynamic properties of axially moving systems. J. Sound Vib. 281(3), 593–609 (2005)

    Google Scholar 

  14. Sun, J.L., Yan, P., Liu, H.M.: Non-linear vibration and stability of moving strip with time-dependent tension in rolling process. J. Iron Steel Res. Int. 17(6), 11–15 (2010)

    Google Scholar 

  15. Mockensturm, E.M., Guo, J.: Nonlinear vibration of parametrically excited, viscoelastic, axially moving strings. ASME J. Appl. Mech. 72(3), 374–380 (2005)

    MATH  Google Scholar 

  16. Parker, R.G., Lin, Y.: Parametric instability of axially moving media subjected to multifrequency tension and speed fluctuations. ASME J. Appl. Mech. 68(1), 49–57 (2001)

    MATH  Google Scholar 

  17. Lv, H., Li, Y., Li, L., Liu, Q.: Transverse vibration of viscoelastic sandwich beam with time-dependent axial tension and axially varying moving velocity. Appl. Math. Model. 38(9–10), 2558–2585 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Chubachi, T.: Lateral vibration of axially moving wire or belt form materials. Bull. JSME 1(1), 24–29 (1958)

    Google Scholar 

  19. Mote Jr., C.D.: A study of band saw vibrations. J. Frankl. Inst. 279(6), 430–444 (1965)

    Google Scholar 

  20. Abrate, S.: Vibrations of belts and belt drives. Mech. Mach. Theory 27(6), 645–659 (1992)

    Google Scholar 

  21. Al-Jawi, A.A.N., Pierre, C., Ulsoy, A.G.: Vibration localization in dual-span, axially moving beams, part I: formulation and results. J. Sound Vib. 179(2), 243–266 (1995)

    Google Scholar 

  22. Kim, K.S., Lee, M.J.: Analysis of the non-linear vibration characteristics of a belt-driven system. J. Sound Vib. 223(5), 723–740 (1999)

    Google Scholar 

  23. Pakdemirli, M., Ulsoy, A.G., Ceranoglu, A.: Transverse vibration of an axially accelerating string. J. Sound Vib. 196(2), 179–196 (1994)

    MATH  Google Scholar 

  24. Pakdemirli, M., Ulsoy, A.G.: Stability analysis of an axially accelerating string. J. Sound Vib. 203(5), 815–832 (1997)

    Google Scholar 

  25. Chung, J., Han, C.S., Yi, K.: Vibration of an axially moving string with geometric non-linearity and translating acceleration. J. Sound Vib. 240(4), 733–746 (2001)

    MATH  Google Scholar 

  26. Shin, C., Chung, J., Yoo, H.H.: Dynamic responses of the in-plane and out-of-plane vibrations for an axially moving membrane. J. Sound Vib. 297(3), 794–809 (2006)

    Google Scholar 

  27. Tabarrok, B., Leech, C.M., Kim, Y.I.: On the dynamics of an axially moving beam. J. Frankl. Inst. 297(3), 201–220 (1974)

    MATH  Google Scholar 

  28. Elmaraghy, R., Tabarrok, B.: On the dynamic stability of an axially oscillating beam. J. Frankl. Inst. 300(1), 25–39 (1975)

    Google Scholar 

  29. Lee, H.P.: Dynamics of a beam moving over multiple supports. Int. J. Solid. Struct. 30(2), 199–209 (1993)

    Google Scholar 

  30. Sreeram, T.R., Sivaneri, N.T.: Fe-analysis of a moving beam using lagrangian multiplier method. Int. J. Solid. Struct. 35(28–29), 3675–3694 (1998)

    MATH  Google Scholar 

  31. Zhu, W.D., Ni, J.: Energetics and stability of translating media with an arbitrarily varying length. ASME J. Vib. Acoust. 122, 295–304 (2000)

    Google Scholar 

  32. Zhu, W.D., Ni, J., Huang, J.: Active control of translating media with arbitrarily varying length. ASME J. Vib. Acoust. 123(1), 347–358 (2001)

    Google Scholar 

  33. Zhu, W.D., Teppo, L.J.: Design and analysis of a scaled model of a high-rise, high-speed elevator. J. Sound Vib. 264(3), 707–731 (2003)

    Google Scholar 

  34. Ngo, Q.H., Hong, K.S., Jung, I.H.: Adaptive control of an axially moving system. J. Mech. Sci. Technol. 23(11), 3071–3078 (2009)

    Google Scholar 

  35. Yang, K.J., Hong, K.S., Matsuno, F.: Boundary control of a translating tensioned beam with varying speed. IEEE ASME Trans. Mechatron. 10(5), 594–597 (2005)

    Google Scholar 

  36. Yang, K.J., Hong, K.S., Matsuno, F.: Energy-based control of axially translating beams: varying tension, varying speed, and disturbance adaptation. IEEE Trans. Control Syst. Technol. 13(6), 1045–1054 (2005)

    Google Scholar 

  37. Chen, L.Q., Tang, Y.Q.: Combination and principal parametric resonances of axially accelerating viscoelastic beams: recognition of longitudinally varying tensions. J. Sound Vib. 330(23), 5598–5614 (2011)

    Google Scholar 

  38. Chen, L.Q., Tang, Y.Q.: Parametric stability of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. ASME J. Vib. Acoust. 134(1), 011008 (2012)

    Google Scholar 

  39. Chen, L.Q., Tang, Y.Q., Zu, J.W.: Nonlinear transverse vibration of axially accelerating strings with exact internal resonances and longitudinally varying tensions. Nonlinear Dyn. 76(2), 1443–1468 (2014)

    MATH  Google Scholar 

  40. Ding, H., Yan, Q.Y., Zu, J.W.: Chaotic dynamics of an axially accelerating viscoelastic beam in the supercritical regime. Int. J. Bifurc. Chaos 24(5), 1450062 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Tang, Y.Q., Zhang, D.B., Gao, J.M.: Parametric and internal resonance of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. Nonlinear Dyn. 83(1–2), 401–418 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Tang, Y.Q., Chen, L.Q., Zhang, H.J., Yang, S.P.: Stability of axially accelerating viscoelastic timoshenko beams: recognition of longitudinally varying tensions. Mech. Mach. Theory 62(4), 31–50 (2013)

    Google Scholar 

  43. Yan, Q.Y., Ding, H., Chen, L.Q.: Periodic responses and chaotic behaviors of an axially accelerating viscoelastic timoshenko beam. Nonlinear Dyn. 78(2), 1577–1591 (2014)

    MathSciNet  Google Scholar 

  44. Tang, Y.Q., Zhang, D.B., Rui, M.H., Wang, X., Zhu, D.C.: Dynamic stability of axially accelerating viscoelastic plates with longitudinally varying tensions. Appl. Math. Mech. Engl. 37(12), 1647–1668 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Vetyukov, Y., Gruber, P.G., Krommer, M.: Nonlinear model of an axially moving plate in a mixed Eulerian–Lagrangian framework. Acta Mech. 227(10), 2831–2842 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Vetyukov, Y.: Mechanics of axially moving structures at mixed Eulerian–Lagrangian description. In: Analysis and Modelling of Advanced Structures and Smart Systems, Advanced Structured Materials, vol. 81, pp. 291–325 (2018)

    Google Scholar 

  47. Jeronen, J.: On the mechanical stability and out-of-plane dynamics of a travelling panel submerged in axially flowing ideal fluid: a study into paper production in mathematical terms. Ph.D. thesis, Department of Mathematical Information Technology, University of Jyväskylä (2011)

  48. Chen, L.Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58(2), 91–116 (2005)

    Google Scholar 

  49. Chen, L.Q., Zu, J.W.: Solvability condition in multi-scale analysis of gyroscopic continua. J. Sound Vib. 309(1), 338–342 (2008)

    Google Scholar 

  50. Bellman, R.E., Casti, J.: Differential quadrature and long-term integration. J. Math. Anal. Appl. 34(2), 235–238 (1971)

    MathSciNet  MATH  Google Scholar 

  51. Bellman, R.E., Kasher, B.G., Casti, J.: Differential quadrature: a technique for the rapid slution of nonlinear partial differential equations. J. Comput. Phys. 10(1), 40–52 (1972)

    MathSciNet  Google Scholar 

  52. Bert, C.W., Malik, M.: The differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49(1), 1–28 (1996)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Project No. 11672186) and the Chen Guang Project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No. 14CG57).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Qi Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A1

$$\begin{aligned} \begin{array}{l} f_1 ={\left( {1-\gamma _0^2 } \right) }/{k_{\mathrm{f}}^2 },\;f_2 ={2\mathrm{i}\gamma _0 \lambda _n }/{k_{\mathrm{f}}^2 },\;\\ f_3 ={\lambda _n^2 }/{k_{\mathrm{f}}^2 },\;g_1 =f_1^2 +12f_3 ,\; \\ g_2 =2f_1^3 +27f_2^2 -72f_1 f_3 ,\;\;g_4 =-2f_1 -4g_3^2 , \\ g_3 =\frac{1}{2}\sqrt{-\,\frac{2f_1 }{3}+\frac{\root 3 \of {2}g_1 }{3\root 3 \of {g_2 +\sqrt{g_2^2 -4g_1^3 }}}+\frac{\root 3 \of {g_2 +\sqrt{g_2^2 -4g_1^3 }}}{3\root 3 \of {2}}},\;\; \\ g_5 ={f_2 }/{g_3 },\;\;\;\;\lambda _n =\delta _n +\mathrm{i}\omega _n ,\;\;\;\\ \beta _{1n} =g_1 -0.5\sqrt{g_2 -g_3 },\;\; \\ \beta _{2n} =g_1 +0.5\sqrt{g_2 -g_3 },\;\;\beta _{3n} =-g_1 -\,0.5\sqrt{g_2 +g_3 },\;\;\\ \beta _{4n} =-\,g_1 +0.5\sqrt{g_2 +g_3 }. \\ \end{array}\nonumber \\ \end{aligned}$$
(A1)

Appendix A2

$$\begin{aligned} \begin{array}{l} \zeta _0 =-\,\mathrm{i}\omega _1 \varphi _1 -\gamma _0 \varphi _1 ^{\prime } ,\;\;\zeta _1 =-\mathrm{i}\gamma _0 \varphi _2 \hbox {,}_{xx} \\ \qquad +\,\omega _2 {\varphi }'_2 +0.5x\varOmega _1 {\varphi }''_2 , \\ \zeta _2 =\omega _1 \bar{{\varphi }}_1 ,_x +\mathrm{i}\gamma _0 {\bar{{\varphi }}}''_1 +0.5x\varOmega _1 {\bar{{\varphi }}}''_1 ,\;\;\\ \zeta _3 =-\mathrm{i}\omega _1 \varphi _1 ''''-\gamma _0 \varphi _1 ^{\prime \prime \prime \prime \prime } , \\ \zeta _4 =2{\varphi }''_1 \int _0^1 {{\varphi }'_1 {\bar{{\varphi }}}'_1 } {\mathrm{d}}x+{\bar{{\varphi }}}''_1 \int _0^1 {{\varphi }_1 ^{\prime 2}} {\mathrm{d}}x,\;\;\\ \zeta _5 ={\varphi }''_2 \int _0^1 {{\bar{{\varphi }}}_1 ^{\prime 2}} {\mathrm{d}}x+2{\bar{{\varphi }}}''_1 \int _0^1 {{\varphi }'_2 {\bar{{\varphi }}}'_1 } {\mathrm{d}}x, \\ \zeta _6 ={\varphi }''_1 \int _0^1 {{\varphi }'_2 {\bar{{\varphi }}}'_2 } {\mathrm{d}}x +{\varphi }''_2 \int _0^1 {{\varphi }'_1 {\bar{{\varphi }}}'_2 } {\mathrm{d}}x\\ \qquad +\,{\bar{{\varphi }}}''_2 \int _0^1 {{\varphi }'_1 {\varphi }'_2 } {\mathrm{d}}x, \\ \xi _0 =-\mathrm{i}\omega _2 \varphi _2 -\gamma _0 {\varphi }'_2 ,\;\;\\ \xi _1 =\hbox {i}\gamma _0 {\varphi }''_1 -\omega _1 {\varphi }'_1 +0.5x\varOmega _1 {\varphi }''_1 , \\ \xi _2 ={\left( {\omega _2 {\bar{{\varphi }}}'_2 +\hbox {i}\gamma _0 {\bar{{\varphi }}}''_2 } \right) }/{\varOmega _2 }+0.5x{\bar{{\varphi }}}''_2 ,\;\;\\ \xi _3 =-\mathrm{i}\omega _2 \varphi _2 ''''-\gamma _0 \varphi _2^{ \prime \prime \prime \prime \prime } , \\ \xi _4 =2{\varphi }''_2 \int _0^1 {{\varphi }'_2 {\bar{{\varphi }}}'_2 } {\mathrm{d}}x+{\bar{{\varphi }}}''_2 \int _0^1 {{\varphi }_2 ^{\prime 2}} {\mathrm{d}}x,\;\;\\ \xi _5 ={\varphi }''_1 \int _0^1 {{\varphi }_1 ^{\prime 2}} {\mathrm{d}}x, \\ \xi _6 ={\varphi }''_1 \int _0^1 {{\varphi }'_2 {\bar{{\varphi }}}'_1 } {\mathrm{d}}x+{\varphi }''_2 \int _0^1 {{\varphi }'_1 {\bar{{\varphi }}}'_1 } {\mathrm{d}}x+{\bar{{\varphi }}}''_1 \int _0^1 {{\varphi }'_1 {\varphi }'_2 } {\mathrm{d}}x. \\ \end{array} \end{aligned}$$
(A2)

Appendix A3

$$\begin{aligned} \begin{array}{l} \displaystyle \zeta _1 \leftrightarrow \frac{\int _0^1 {\zeta _1 \bar{{\varphi }}_1 {\mathrm{d}}x} }{\int _0^1 {2\zeta _0 \bar{{\varphi }}_1 {\mathrm{d}}x} },\;\;\zeta _2 \leftrightarrow \frac{\int _0^1 {\zeta _2 \bar{{\varphi }}_1 {\mathrm{d}}x} }{\int _0^1 {2\zeta _0 \bar{{\varphi }}_1 {\mathrm{d}}x} },\;\;\;\\ \zeta _3 \leftrightarrow \frac{\int _0^1 {\zeta _3 \bar{{\varphi }}_1 {\mathrm{d}}x} -\alpha \gamma _0 {\varphi }'''_1 \;{\bar{{\varphi }}}'_1 |_0^1 }{\int _0^1 {2\zeta _0 \bar{{\varphi }}_1 {\mathrm{d}}x} }, \\ \displaystyle \zeta _4 \leftrightarrow \frac{\mathop \int \nolimits _0^1 \zeta _4 \bar{{\varphi }}_1 {\mathrm{d}}x}{\mathop \int \nolimits _0^1 4\zeta _0 \bar{{\varphi }}_1 {\mathrm{d}}x},\;\;\zeta _5 \leftrightarrow \frac{\mathop \int \nolimits _0^1 \zeta _5 \bar{{\varphi }}_1 {\mathrm{d}}x}{\mathop \int \nolimits _0^1 4\zeta _0 \bar{{\varphi }}_1 {\mathrm{d}}x},\;\;\\ \zeta _6 \leftrightarrow \frac{\mathop \int \nolimits _0^1 \zeta _6 \bar{{\varphi }}_1 {\mathrm{d}}x}{\mathop \int \nolimits _0^1 2\zeta _0 \bar{{\varphi }}_1 {\mathrm{d}}x}; \\ \displaystyle \xi _1 \leftrightarrow \frac{\int _0^1 {\xi _1 \bar{{\varphi }}_2 {\mathrm{d}}x} }{\int _0^1 {2\xi _0 \bar{{\varphi }}_2 {\mathrm{d}}x} },\xi _2 \leftrightarrow \frac{\int _0^1 {\xi _2 \bar{{\varphi }}_2 {\mathrm{d}}x} }{\int _0^1 {2\xi _0 \bar{{\varphi }}_2 {\mathrm{d}}x} },\\ \xi _3 \leftrightarrow \frac{\int _0^1 {\xi _3 \bar{{\varphi }}_2 {\mathrm{d}}x} -\alpha \gamma _0 \varphi _2 \hbox {,}_{xxx} \bar{{\varphi }}_2 ,_x |_0^1 }{\int _0^1 {2\xi _0 \bar{{\varphi }}_2 {\mathrm{d}}x} }, \\ \displaystyle \xi _4 \leftrightarrow \frac{\mathop \int \nolimits _0^1 \xi _4 \bar{{\varphi }}_2 {\mathrm{d}}x}{\mathop \int \nolimits _0^1 4\xi _0 \bar{{\varphi }}_2 {\mathrm{d}}x},\xi _5 \leftrightarrow \frac{\mathop \int \nolimits _0^1 \xi _5 \bar{{\varphi }}_2 {\mathrm{d}}x}{\mathop \int \nolimits _0^1 4\xi _0 \bar{{\varphi }}_2 {\mathrm{d}}x},\\ \xi _6 \leftrightarrow \frac{\mathop \int \nolimits _0^1 \xi _6 \bar{{\varphi }}_2 {\mathrm{d}}x}{\mathop \int \nolimits _0^1 2\xi _0 \bar{{\varphi }}_2 {\mathrm{d}}x}. \end{array} \end{aligned}$$
(A3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, YQ., Ma, ZG. Nonlinear vibration of axially moving beams with internal resonance, speed-dependent tension, and tension-dependent speed. Nonlinear Dyn 98, 2475–2490 (2019). https://doi.org/10.1007/s11071-019-05105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05105-3

Keywords

Navigation