Skip to main content
Log in

Finite-time reliable attitude tracking control design for nonlinear quadrotor model with actuator faults

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is focused on a finite-time reliable control design for nonlinear quadrotor attitude dynamic model against the actuator faults and external disturbances. By the utilization of an appropriate Lyapunov–Krasovskii functional, a finite-time performance analysis criterion is derived to obtain the robust reliable tracking control design for quadrotor dynamic model. Then, a fault-tolerant tracking control is designed such that the attitude of the quadrotor is reliable in the sense that it is finite-time bounded and satisfies the suggested mixed \(H_\infty \) and passivity performance index under given constraints. Also, the finite-time fault-tolerant controller gain is derived by solving the obtained linear matrix inequalities based on the convex optimization technique. Finally, simulation results are provided to verify the effectiveness and robustness of the proposed control design law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang, R., Quan, Q., Cai, K.Y.: Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances. IET Control Theory Appl. 5, 1140–1146 (2011)

    Article  MathSciNet  Google Scholar 

  2. Tang, Y.R., Xiao, X., Li, Y.: Nonlinear dynamic modeling and hybrid control design with dynamic compensator for a small-scale UAV quadrotor. Measurement 109, 51–64 (2017)

    Article  Google Scholar 

  3. Alexis, K., Nikolakopoulos, G., Tzes, A.: Experimental constrained optimal attitude control of a quadrotor subject to wind disturbances. Int. J. Control Autom. Syst. 12, 1289–1302 (2014)

    Article  MATH  Google Scholar 

  4. Modirrousta, A., Khodabandeh, M.: Adaptive non-singular terminal sliding mode controller: new design for full control of the quadrotor with external disturbances. Trans. Inst. Meas. Control 39, 371–383 (2017)

    Article  Google Scholar 

  5. Xu, J., Lim, C.C., Shi, P.: Sliding mode control of singularly perturbed systems and its application in quad-rotors. Int. J. Control. https://doi.org/10.1080/00207179.2017.1393102

  6. Kim, S-K., Ahn, C.K.: Auto-Tuner based controller for quadcopter attitude tracking applications. Trans. Circuits Syst. II. https://doi.org/10.1109/TCSII.2019.2896591

  7. Liu, H., Li, D., Zuo, Z., Zhong, Y.: Robust three-loop trajectory tracking control for quadrotors with multiple uncertainties. IEEE Trans. Ind. Electron. 63, 2263–2274 (2016)

    Google Scholar 

  8. Zhao, B., Xian, B., Zhang, Y., Zhang, X.: Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology. IEEE Trans. Ind. Electron. 62, 2891–2902 (2015)

    Article  Google Scholar 

  9. Yu, Y., Wang, Q., Sun, C., Liu, H.: Robust compensator with constraints for attitude manoeuvres of a quadrotor subject to unknown stochastic input delays. J. Control Decis. https://doi.org/10.1080/23307706.2018.1502054

  10. Wang, C., Song, B., Huang, P., Tang, C.: Trajectory tracking control for quadrotor robot subject to payload variation and wind gust disturbance. J. Intell. Robot. Syst. 83, 315–333 (2016)

    Article  Google Scholar 

  11. Xu, J., Shi, P., Lim, C.-C., Cai, C., Zou, Y.: Reliable tracking control for under-actuated quadrotors with wind disturbances. IEEE Trans. Syst. Man Cybern. Syst. https://doi.org/10.1109/TSMC.2017.2782662

  12. Sakthivel, R., Saravanakumar, T., Kaviarasan, B., Lim, Y.: Finite-time dissipative based fault-tolerant control of Takagi–Sugeno fuzzy systems in a network environment. J. Frankl. Inst. 354, 3430–3454 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, H., Shi, P., Karimi, H.R., Chadli, M.: Finite-time stability and stabilisation for a class of nonlinear systems with time-varying delay. Int. J. Syst. Sci. 47, 1433–1444 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, X., Yan, Y., Huang, Z.: Finite-time control of under actuated spacecraft hovering. Control Eng. Pract. 68, 46–62 (2017)

    Article  Google Scholar 

  15. Sakthivel, R., Santra, S., Kaviarasan, B., Park, J.H.: Finite-time sampled-data control of permanent magnet synchronous motor systems. Nonlinear Dyn. 86, 2081–2092 (2016)

    Article  MATH  Google Scholar 

  16. Du, H., Zhu, W., Wen, G., Wu, D.: Finite-time formation control for a group of quadrotor aircraft. Aerosp. Sci. Technol. 69, 609–616 (2017)

    Article  Google Scholar 

  17. Zhai, D.-H., Xia, Y.: Finite-time control of teleoperation systems with input saturation and varying time delays. IEEE Trans. Syst. Man Cybern. Syst. 47, 1522–1534 (2017)

    Article  Google Scholar 

  18. Jin, X.: Adaptive finite-time fault tolerant tracking control for a class of MIMO nonlinear systems with output constraints. Int. J. Robust Nonlinear Control 27, 722–741 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, Z., Lu, R., Wang, H.: Finite-time trajectory tracking control of a class of nonlinear discrete-time systems. IEEE Trans. Syst. Man Cybern. Syst. 47, 1679–1687 (2017)

    Article  Google Scholar 

  20. Jin, X.: Adaptive decentralized finite-time output tracking control for MIMO interconnected nonlinear systems with output constraints and actuator faults. Int. J. Robust Nonlinear Control. 28, 1808–1829 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, F., Zhang, X., Chen, B., Lin, C., Li, X., Zhang, J.: Adaptive finite-time tracking control of switched nonlinear systems. Inf. Sci. 421, 126–135 (2017)

    Article  MathSciNet  Google Scholar 

  22. Wang, Z., Man, Y.: Sufficient and necessary conditions on finite-time tracking. IEEE Trans. Syst. Man Cybern. Syst 47, 3331–3339 (2017)

    Article  Google Scholar 

  23. Elahi, A., Alfi, A.: Finite-time \(H_\infty \) control of uncertain networked control systems with randomly varying communication delays. ISA Trans. 69, 65–88 (2017)

    Article  Google Scholar 

  24. Su, Y., Zheng, C., Mercorelli, P.: Global finite-time stabilization of planar linear systems with actuator saturation. IEEE Trans. Circuits Syst. II Express Briefs 64, 947–951 (2017)

    Article  Google Scholar 

  25. Jin, X.: Fault tolerant finite-time leader follower formation control for autonomous surface vessels with LOS range and angle constraints. Automatica 68, 228–236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sakthivel, R., Kaviarasan, B., Ahn, C.K., Karimi, H.R.: Observer and stochastic faulty actuator-based reliable consensus protocol for multi-agent system. IEEE Trans. Syst. Man Cybern. Syst. 48, 2383–2393 (2018)

    Article  Google Scholar 

  27. Zhao, Z., Yang, J., Li, S., Yu, X., Wang, Z.: Continuous output feedback TSM control for uncertain systems with a DC–DC inverter example. IEEE Trans. Circuits Syst. II: Express Briefs 65, 71–75 (2018)

    Article  Google Scholar 

  28. Sakthivel, R., Ahn, C.K., Joby, M.: Fault-tolerant resilient control for fuzzy fractional order systems. IEEE Trans. Syst. Man Cybern. Syst. https://doi.org/10.1109/TSMC.2018.2835442

  29. Zhang, R., Qiao, J., Li, T., Guo, L.: Robust fault-tolerant control for flexible spacecraft against partial actuator failures. Nonlinear Dyn. 76, 1753–1760 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tian, E., Wang, Z., Zou, L., Yue, D.: Probability-constrained filtering for a class of nonlinear systems with improved static event-triggered communication. Int. J. Robust Nonlinear Control 29, 1484–1498 (2019)

    Article  MATH  Google Scholar 

  31. Jin, X.: Adaptive fault-tolerant tracking control for a class of stochastic nonlinear systems with output constraint and actuator faults. Syst. Control Lett. 107, 100–109 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, X., Ahn, C.K., Lu, D., Guo, S.: Robust simultaneous fault estimation and non-fragile output feedback fault-tolerant control for Markovian jump systems. IEEE Trans. Syst. Man Cybern. Syst. https://doi.org/10.1109/TSMC.2018.2828123

  33. Tian, E., Yue, D., Yang, T.C., Gu, Z., Lu, G.: T-S Fuzzy model-based robust stabilization for networked control systems with probabilistic sensor and actuator failure. IEEE Trans. Fuzzy Syst. 19, 553–561 (2011)

    Article  Google Scholar 

  34. Zheng, Q., Zhang, H., Ling, Y., Guo, X.: Mixed \(H_\infty \) and passive control for a class of nonlinear switched systems with average dwell time via hybrid control approach. J. Frankl. Inst. 355, 1156–1175 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhu, B., Suo, M., Chen, Y., Zhang, Z., Li, S.: Mixed \(H_\infty \) and passivity control for a class of stochastic nonlinear sampled-data systems. J. Frankl. Inst. 355, 3310–3329 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Sakthivel or Choon Ki Ahn.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harshavarthini, S., Sakthivel, R. & Ahn, C.K. Finite-time reliable attitude tracking control design for nonlinear quadrotor model with actuator faults. Nonlinear Dyn 96, 2681–2692 (2019). https://doi.org/10.1007/s11071-019-04952-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04952-4

Keywords

Navigation