Skip to main content
Log in

Estimation of dynamic behaviors of hydraulic forging press machine in slow-motion manufacturing process

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, stick–slip phenomenon of hydraulic forging press machine (HFPM), a nonlinear manufacturing system subjected to weak rigidity and negative friction velocity gradient, was investigated in slow-motion process. Dynamic characteristics of non-smooth motion were investigated experimentally under various operating conditions in slow-motion process. Taking into account the quadratic and cubic nonlinearities, the governing equation of the HFPM was derived. The method of multiple scales was employed to obtain approximate solution for velocity oscillation during slow motion. The steady-state responses for each case (i.e., non-resonance, primary, super-harmonic and sub-harmonic oscillation) were examined to investigate the correlation between velocity oscillation and nonlinear vibration in slow motion. The effects of viscous damping coefficient, hydraulic stiffness, friction parameters, excitation amplitude and frequency on the amplitude–frequency response characteristics were studied, and the interaction between system dynamics and tribological effects were presented. The stability of operational conditions and the critical velocity of the forging process were analyzed through the bifurcation techniques. Experimental results conducted on the HFPM verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Lu, X.J., Huang, M.H.: Multi-domain modeling based robust design for nonlinear manufacture system. Int. J. Mech. Sci. 75(10), 80–86 (2013)

    Article  Google Scholar 

  2. Lu, X.J., Huang, M.H.: System decomposition based multi-level control for hydraulic press machine. IEEE Trans. Ind. Electron. 59(4), 1980–1987 (2012)

    Article  Google Scholar 

  3. Rao, K.P., Prasad, Y.V.R.K., Suresh, K.: Materials modeling and simulation of isothermal forging of rolled AZ31B magnesium alloy: anisotropy of flow. Mater. Des. 32(5), 2545–2553 (2011)

    Article  Google Scholar 

  4. Rowson, D.M.: An analysis of stick–slip motion. Wear 31(2), 213–218 (1975)

    Article  Google Scholar 

  5. Korycki, J.: Mathematical model of the stick–slip phenomenon. Wear 55(2), 261–263 (1979)

    Article  Google Scholar 

  6. Neis, P.D., De-Baets, P., Ost, W.: Investigation of the dynamic response in a dry friction process using a rotating stick–slip tester. Wear 271(9–10), 2640–2650 (2011)

    Article  Google Scholar 

  7. Martins, J.A.C., Oden, J.T., Simoes, F.M.F.: A study of static and kinetic friction. Int. J. Eng. Sci. 28(1), 29–92 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Richard, T., Germay, C., Detournay, E.: A simplified model to explore the root cause of stick–slip vibrations in drilling systems with drag bits. J. Sound Vib. 305(3), 432–456 (2007)

    Article  Google Scholar 

  9. Rabinowicz, E.: Friction and Wear of Materials. Wiley, New York (1965)

    Google Scholar 

  10. Teshima, T., Komura, Y.: Dynamical characteristics of the hydraulic feed system of machine tools: amplitude and period of stick–slip oscillation. Bull JSME. 21(153), 463–470 (1978)

    Article  Google Scholar 

  11. Kang, J.: Parametric study on friction-induced coupled oscillator. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 222(8), 1381–1387 (2008)

    Article  Google Scholar 

  12. Ouyang, H., Mottershead, J.E., Cartmell, M.P.: Friction-induced parametric resonances in discs: effect of a negative friction–velocity relationship. J. Sound Vib. 209(2), 251–264 (1998)

    Article  Google Scholar 

  13. Van-De-Velde, F., De-Baets, P.: A new approach of stick–slip based on quasi-harmonic tangential oscillations. Wear 216(1), 15–26 (1998)

    Article  Google Scholar 

  14. Dankowicz, H., Nordmark, A.B.: On the origin and bifurcations of stick–slip oscillations. Phys. D. 136(3), 280–302 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brian, A.H.: Stick slip and control in low-speed motion. IEEE Trans. Autom. Contr. 38(10), 1483–1496 (1993)

    Article  MathSciNet  Google Scholar 

  16. Velde, F.V.D., Baets, P.D.: Mathematical approach of the influencing factors on stick–slip induced by decelerative motion. Wear 201(1), 80–93 (1996)

    Article  Google Scholar 

  17. Baets, P.D., Degrieck, J., Velde, F.V.D., Peteghem, A.P.V.: Experimental verification of the mechanisms causing stick–slip motion originating from relative deceleration. Wear 243(1), 48–59 (2000)

    Article  Google Scholar 

  18. Thomsen, J.J., Fidlin, A.: Analytical approximations for stick–slip vibration amplitudes. Int. J. Non Linear Mech. 38(3), 389–403 (2003)

    Article  MATH  Google Scholar 

  19. Pascal, M.: Dynamics of coupled oscillators excited by dry friction. J. Comput. Nonlinear Dyn. 3(3), 1–6 (2008)

    Google Scholar 

  20. Pascal, M.: New events in stick—slip oscillators behavior. J. Appl. Math. Mech. 75(3), 283–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marin, F., Alhama, F., Moreno, J.A.: Modelling of stick–slip behaviour with different hypotheses on friction forces. Int. J. Eng. Sci. 60, 13–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kato, S., Matsubayashi, T., Sato, N.: Some considerations on characteristics of static friction of machine tool slideway. J. Lubr. Technol. 94(3), 234–247 (1972)

    Article  Google Scholar 

  23. Kato, S., Yamaguchi, K., Matsubayashi, T.: Stick–slip motion of machine tool slideway. J. Eng. Ind. Trans. ASME 96(2), 557–566 (1974)

    Article  Google Scholar 

  24. Gao, C., Kuhlmann-Wilsdorf, D., Mekel, D.D.: Fundamentals of stick–slip. Wear 162(1), 1139–1149 (1993)

    Article  Google Scholar 

  25. Gao, C., Kuhlmann-Wilsdorf, D., Mekel, D.D.: The dynamic analysis of stick–slip motion. Wear 173(1–2), 1–12 (1994)

    Article  Google Scholar 

  26. Karnopp, D.: Computer simulation of stick–slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control 107(1), 100–103 (1985)

    Article  Google Scholar 

  27. Chin, J.H., Chen, C.C.: A study of stick–slip motion and its influence on the cutting process. Int. J. Mech Sci. 35(5), 353–370 (1993)

    Article  Google Scholar 

  28. Owen, W.S., Croft, E.A.: The reduction of stick–slip friction in hydraulic actuators. IEEE/ASME Trans. Mechatron. 8(3), 362–371 (2003)

    Article  Google Scholar 

  29. Singh, B.R.: Study of critical velocity of stick–slip sliding. J. Eng. Ind. 82(4), 393–398 (1960)

    Article  Google Scholar 

  30. Banerjee, A.K.: Influence of kinetic friction on the critical velocity of stick–slip motion. Wear 12(2), 107–116 (1968)

    Article  Google Scholar 

  31. Li, C.B., Pavelescu, D.: The friction-speed relation and its influence on the critical velocity of stick–slip motion. Wear 82(3), 277–289 (1982)

    Article  Google Scholar 

  32. Capone, G., Dagostino, V., Valle, S.D., Guida, D.: Stick–slip instability analysis. Meccanica 27(2), 111–118 (1992)

    Article  MATH  Google Scholar 

  33. Fang, H., Xu, J.: Stick–slip effect in a vibration-driven system with dry friction: sliding bifurcations and optimization. J. Appl. Mech. 81(5), 1–10 (2014)

    Article  Google Scholar 

  34. Ozaki, S., Hashiguchi, K.: Numerical analysis of stick–slip instability by a rate-dependent elastoplastic formulation for friction. Tribol. Int. 43(11), 2120–2133 (2010)

    Article  Google Scholar 

  35. Yanada, H., Sekikawa, Y.: Modeling of dynamic behaviors of friction. Mechatronics 18(7), 330–339 (2008)

    Article  Google Scholar 

  36. Xuan, B.T., Hafizah, N., Yanada, H.: Modeling of dynamic friction behaviors of hydraulic cylinders. Mechatronics 22(1), 65–75 (2012)

    Article  Google Scholar 

  37. Marui, E., Endo, H., Hashimoto, M., Kato, S.: Some considerations of slideway friction characteristics by observing stick–slip vibration. Tribol. Int. 29(3), 251–262 (1996)

    Article  Google Scholar 

  38. Muraki, M., Kinbara, E., Konishi, T.: A laboratory simulation for stick–slip phenomena on the hydraulic cylinder of a construction machine. Tribol. Int. 36(10), 739–744 (2003)

    Article  Google Scholar 

  39. Powalka, B., Okulik, T.: Dynamics of the guideway system founded on casting compound. Int. J. Adv. Manuf. Technol. 59(1), 1–7 (2012)

    Article  Google Scholar 

  40. Tarng, Y.S., Cheng, H.E.: An investigation of stick–slip friction on the contouring accuracy of CNC machine tools. Int. J. Mach. Tools Manuf. 35(4), 565–576 (1995)

    Article  Google Scholar 

  41. Bilkay, O., Anlagan, O.: Computer simulation of stick–slip motion in machine tool slideways. Tribol. Int. 37(4), 347–351 (2004)

    Article  Google Scholar 

  42. Wang, L.H., Wu, B., Du, R.S.: Nonlinear dynamic characteristics of moving hydraulic cylinder. Chin. J. Mech. Eng. 43(12), 12–19 (2007)

    Article  Google Scholar 

  43. Chen, Y.S.: Nonlinear Vibrations. Higher Education Press, Beijing (2002)

    Google Scholar 

  44. Moradi, H., Vossoughi, G., Movahhedy, M.R., Ahmadian, M.T.: Forced vibration analysis of the milling process with structural nonlinearity, internal resonance, tool wear and process damping effects. Int. J. Non Linear Mech. 54(3), 22–34 (2013)

    Article  Google Scholar 

  45. Sahebkar, S.M., Ghazavi, M.R., Khadem, S.E., Ghayesh, M.H.: Nonlinear vibration analysis of an axially moving drillstring system with time dependent axial load and axial velocity in inclined well. Mech. Mach. Theory 46(5), 743–760 (2011)

    Article  MATH  Google Scholar 

  46. Moradi, H., Movahhedy, M.R., Vossoughi, G.: Dynamics of regenerative chatter and internal resonance in milling process with structural and cutting force nonlinearities. J. Sound Vib. 331(16), 3844–3865 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the project supported by the Project of State Key Laboratory of High Performance Complex Manufacturing, Central South University, (Grant No. ZZYJKT2018-15), the Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX2013B062), the Innovation-driven Plan in Central South University (Grant No. 2015CX002), and the science and technology plan in Hunan Province (Grant No. 2016RS2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivations regarding stability of response behaviors for primary resonance

Appendix: Derivations regarding stability of response behaviors for primary resonance

Firstly, the steady-state solution for the primary resonance case is defined by \((a_0 ,\omega _0 )\); thus, the solution yields

$$\begin{aligned}&-\eta -\varphi \cos \gamma _1 -\xi \sin \gamma _1 =0, \end{aligned}$$
(A.1)
$$\begin{aligned}&a\omega _0 \sigma -\phi -\xi \cos \gamma _1 +\varphi \sin \gamma _1 =0. \end{aligned}$$
(A.2)

In order to examine the stability of the steady-state response behaviors for the case of primary resonance, the small perturbations, denoted by \(\delta a\) and \(\delta \gamma \), are incorporated \(a = a_0 +\delta a\), \(\gamma _1 =\gamma _0 +\delta \gamma \), in Eqs. (37) and (38). Therefore, the linearized equations are expressed as

$$\begin{aligned} \frac{\hbox {d}\left( {\delta a} \right) }{\hbox {d}t}= & {} -\left( \frac{\phi _1 }{\omega _0 }+3\lambda \omega _0 a_0 \rho _1 \omega _1 \cos \gamma _0 \right. \nonumber \\&\quad \left. +\,\frac{3}{\omega _0 }\alpha _1 a_0 \rho _1 \sin \gamma _0 \right) \delta a\nonumber \\&\quad +\,\left( {\frac{\varphi _0 }{\omega _0 }\sin \gamma _0 -\frac{\xi _0 }{\omega _0 }\cos \gamma _0 } \right) \delta \gamma , \end{aligned}$$
(A.3)
$$\begin{aligned}&\frac{\hbox {d}\left( {\delta \gamma } \right) }{\hbox {d}t}=\left( -\frac{3\alpha _1 a_0 }{4\omega _0 }{-}\left( {\frac{3\alpha _1 \rho _1 }{2\omega _0 }{-}\frac{3\alpha _1 \rho _1^3 }{a_0^2 \omega _0 }{-}\frac{6\alpha _1 \rho _1 \rho _2^2 }{a_0^2 \omega _0 }} \right) \right. \nonumber \\&\quad \cos \gamma _0 \left. +\,\left( {-\frac{\mu \omega _1 \rho _1 }{a_0^2 \omega _0 }+\frac{3}{2}\lambda \omega _0 \rho _1 \omega _1 -\frac{3\lambda \omega _1^3 \rho _1^3 }{a_0^2 \omega _0 }} \right. \right. \nonumber \\&\quad \left. \left. -\,\frac{6\lambda \omega _1 \rho _1 \omega _2^2 \rho _2^2 }{a_0^2 \omega _0 } \right) \sin \gamma _0 \right) \delta a\nonumber \\&\quad +\,\left( {\left( {\frac{3\alpha _1 a_0 \rho _1 }{2\omega _0 }+\frac{3\alpha _1 \rho _1^3 }{a_0 \omega _0 }+\frac{6\alpha _1 \rho _1 \rho _2^2 }{a_0 \omega _0 }} \right) } \right. \sin \gamma _0 \nonumber \\&\quad +\,\left( {\frac{\mu \omega _1 \rho _1 }{a_0 \omega _0 }+\frac{3}{2}\lambda \omega _0 a_0 \rho _1 \omega _1 } \right. \nonumber \\&\quad \left. {\left. {+\frac{3\lambda \omega _1^3 \rho _1^3 }{a_0 \omega _0 }+\frac{6\lambda \omega _1 \rho _1 \omega _2^2 \rho _2^2 }{a_0 \omega _0 }} \right) \cos \gamma _0 } \right) \delta \gamma , \end{aligned}$$
(A.4)

with the variables \(\sin \gamma _0 \) and \(\cos \gamma _0 \), obtained from Eqs. A.1 and A.2,

$$\begin{aligned} \sin \gamma _0= & {} \frac{\left( {\phi _0 -a_0 \omega _0 \sigma } \right) \varphi _0 -\eta _0 \xi _0 }{\xi _0^2 +\varphi _0^2 }, \end{aligned}$$
(A.5)
$$\begin{aligned} \cos \gamma _0= & {} \frac{-\left( {\phi _0 -a_0 \omega _0 \sigma } \right) \xi _0 -\eta _0 \varphi _0 }{\xi _0^2 +\varphi _0^2 }, \end{aligned}$$
(A.6)

where

$$\begin{aligned} \phi _0= & {} \frac{3}{8}\alpha _1 a_0^3 +3\alpha _1 a_0 \rho _1^2 +3\alpha _1 a_0 \rho _2^2 , \\ \phi _1= & {} \frac{1}{2}\mu \omega _0 +\frac{9}{8}\lambda a_0^2 \omega _0^2 +3\lambda \omega _0 \left( {\rho _1^2 \omega _1^2 +\rho _2^2 \omega _2^2 } \right) , \\ \varphi _0= & {} \mu \omega _1 \rho _1 {+}\frac{3}{2}\lambda \omega _0^2 a_0^2 \rho _1 \omega _1 {+}3\lambda \omega _1^3 \rho _1^3 {+}6\lambda \omega _1 \rho _1 \omega _2^2 \rho _2^2 , \\ \xi _0= & {} \frac{3}{2}\alpha _1 a_0^2 \rho _1 +3\alpha _1 \rho _1^3 +6\alpha _1 \rho _1 \rho _2^2 , \\ \eta _0= & {} \frac{1}{2}\mu a_0 \omega _0 +\frac{3}{8}\lambda a_0^3 \omega _0^3 +3\lambda a_0 \omega _0 \left( {\rho _1^2 \omega _1^2 +\rho _2^2 \omega _2^2 } \right) . \end{aligned}$$

And the corresponding eigenvalue equation is defined by

$$\begin{aligned} \varsigma ^{2}+p^{*}\varsigma +q^{*}=0, \end{aligned}$$
(A.7)

where

$$\begin{aligned} p^{*}= & {} -(A_1 +A_2 ), q^{*}=A_1 A_4 -A_2 A_3 , \end{aligned}$$
(A.8)
$$\begin{aligned} A_1= & {} -\left( \frac{\phi _0 }{\omega _0 }+3\lambda \omega _0 a_0 \rho _1 \omega _1 \cos \gamma _0 \right. \nonumber \\&\left. +\frac{3}{\omega _0 }\alpha _1 a_0 \rho _1 \sin \gamma _0 \right) , \end{aligned}$$
(A.9)
$$\begin{aligned} A_2= & {} \frac{\varphi _0 }{\omega _0 }\sin \gamma _0 -\frac{\xi _0 }{\omega _0 }\cos \gamma _0 , \end{aligned}$$
(A.10)
$$\begin{aligned} A_3= & {} -\frac{3\alpha _1 a_0 }{4\omega _0 }-\left( {\frac{3\alpha _1 \rho _1 }{2\omega _0 }-\frac{3\alpha _1 \rho _1^3 }{a_0^2 \omega _0 }-\frac{6\alpha _1 \rho _1 \rho _2^2 }{a_0^2 \omega _0 }} \right) \nonumber \\&\quad \times \cos \gamma _0 +\,\left( {-\frac{\mu \omega _1 \rho _1 }{a_0^2 \omega _0 }+\frac{3}{2}\lambda \omega _0 \rho _1 \omega _1 } \right. \nonumber \\&\quad \left. -\frac{3\lambda \omega _1^3 \rho _1^3 }{a_0^2 \omega _0 }- {\frac{6\lambda \omega _1 \rho _1 \omega _2^2 \rho _2^2 }{a_0^2 \omega _0 }} \right) \sin \gamma _0 , \end{aligned}$$
(A.11)
$$\begin{aligned} A_4= & {} \left( {\left( {\frac{3\alpha _1 a_0 \rho _1 }{2\omega _0 }+\frac{3\alpha _1 \rho _1^3 }{a_0 \omega _0 }+\frac{6\alpha _1 \rho _1 \rho _2^2 }{a_0 \omega _0 }} \right) } \right. \sin \gamma _0\nonumber \\&+\left( \frac{\mu \omega _1 \rho _1 }{a_0 \omega _0 }+\frac{3}{2}\lambda \omega _0 a_0 \rho _1 \omega _1 \right. \nonumber \\&+\frac{3\lambda \omega _1^3 \rho _1^3 }{a_0 \omega _0 }+ \left. {\frac{6\lambda \omega _1 \rho _1 \omega _2^2 \rho _2^2 }{a_0 \omega _0 }} \right) \cos \gamma _0 . \end{aligned}$$
(A.12)

The stability of steady-state solutions of primary resonance can be estimated based upon the sign of root of Eq. (A-7). Therefore, it can be deduced from Eq. (A-7) that the stability of the periodic solution for case I can be expressed by

$$\begin{aligned} \left\{ {{\begin{array}{l} {q^{*}<0\rightarrow \hbox {Perfectly unstable}} \\ {q^{*}>0\left\{ {{\begin{array}{l} {p^{*}>0\rightarrow \hbox {Asymptotically stable}\left\{ {{\begin{array}{l} {p^{{*}^{2}}-4q^{*}\ge 0\rightarrow \hbox {Stable node}} \\ {p^{{*}^{2}}-4q^{*}<0\rightarrow \hbox {Stable focus}} \\ \end{array} }} \right. } \\ {p^{*}<0\rightarrow \hbox {Perfectly unstable}\left\{ {{\begin{array}{l} {p^{{*}^{2}}-4q^{*}\ge 0\rightarrow \hbox {Unstable node}} \\ {p^{{*}^{2}}-4q^{*}<0\rightarrow \hbox {Unstable focus}} \\ \end{array} }} \right. } \\ \end{array} }} \right. } \\ \end{array} }} \right. . \end{aligned}$$
(A.13)

In order to investigate the stability boundaries of corresponding response curves of primary resonance, differentiating Eqs. A.1 and A.2 to detuning parameter \(\sigma \) results in

$$\begin{aligned}&\left( {\phi _0 +3\lambda \omega _0^2 a_0 \rho _1 \omega _1 \cos \gamma _0 +3\alpha _1 a_0 \rho _1 \sin \gamma _0 } \right) \frac{\hbox {d}a}{\hbox {d}\sigma }\nonumber \\&\quad +\,\left( {\xi _0 \cos \gamma _0 -\varphi _0 \sin \gamma _0 } \right) \frac{\hbox {d}\gamma }{\hbox {d}\sigma }=0, \end{aligned}$$
(A.14)
$$\begin{aligned}&\left( \omega _0 \sigma -\left( {\frac{9\alpha _1 a_0^2 }{8}+3\alpha _1 \rho _1^2 +3\alpha _1 \rho _2^2 } \right) \right. \nonumber \\&\quad \left. -\,3\alpha _1 a_0 \rho _1 \cos \gamma _0 +3\lambda \omega _0^2 a_0 \rho _1 \omega _1 \sin \gamma _0 \right) \frac{\hbox {d}a}{\hbox {d}\sigma }\nonumber \\&\quad +\,\left( {\xi _0 \sin \gamma _0 +\varphi _0 \cos \gamma _0 } \right) \frac{\hbox {d}\gamma }{\hbox {d}\sigma }=0. \end{aligned}$$
(A.15)

By eliminating \({\hbox {d}\gamma }/{\hbox {d}\sigma }\), and substituting Eqs. A.5 and A.6 to A.14 and A.15, one derives

$$\begin{aligned}&\left[ \left( {\phi _0 +3\lambda \omega _0^2 a_0 \rho _1 \omega _1 \cos \gamma _0 +3\alpha _1 a_0 \rho _1 \sin \gamma _0 } \right) \eta _0 \right. \nonumber \\&\quad \left. +\,H_0 \left( {a_0 \omega _0 \sigma -\phi _0 } \right) \right] \left( {\frac{\hbox {d}a}{\hbox {d}\sigma }} \right) \nonumber \\&\quad =-a_0 \omega _0 \left( {a_0 \omega _0 \sigma -\phi _0 } \right) , \end{aligned}$$
(A.16)

where

$$\begin{aligned} \mathrm{H}_0= & {} \omega _0 \sigma -\left( {\frac{9\alpha _1 a_0^2 }{8}+3\alpha _1 \rho _1^2 +3\alpha _1 \rho _2^2 } \right) \\&-3\alpha _1 a_0 \rho _1 \cos \gamma _0 +3\lambda \omega _0^2 a_0 \rho _1 \omega _1 \sin \gamma _0 . \end{aligned}$$

Let

$$\begin{aligned} \varTheta= & {} \left( {\phi _0 +3\lambda \omega _0^2 a_0 \rho _1 \omega _1 \cos \gamma _0 +3\alpha _1 a_0 \rho _1 \sin \gamma _0 } \right) \eta _0 \nonumber \\&\quad +\,H_0 \left( {a_0 \omega _0 \sigma -\phi _0 } \right) . \end{aligned}$$
(A.17)

Based on Eqs. A.13 and A.16, one can conclude that the boundary of stability of response curves is

$$ \begin{aligned} \left\{ {{\begin{array}{l} {a_0 \omega _0 \sigma -\phi _0<0\left\{ {{\begin{array}{l} {\frac{\hbox {d}a}{\hbox {d}\sigma }<0\rightarrow \varTheta<0\left\{ {{\begin{array}{l} {q^{*}<0\left| {q^{*}>0,p^{*}<0} \right. \rightarrow \hbox {Untable}} \\ {q^{*}>0\, \& \,p^{*}>0\rightarrow \hbox {Stable}} \\ \end{array} }} \right. } \\ {\frac{\hbox {d}a}{\hbox {d}\sigma }>0\rightarrow \varTheta>0\left\{ {{\begin{array}{l} {q^{*}<0\left| {q^{*}>0,p^{*}<0} \right. \rightarrow \hbox {Untable}} \\ {q^{*}>0\, \& \,p^{*}>0\rightarrow \hbox {Stable}} \\ \end{array} }} \right. } \\ \end{array} }} \right. } \\ {a_0 \omega _0 \sigma -\phi _0>0\left\{ {{\begin{array}{l} {\frac{\hbox {d}a}{\hbox {d}\sigma }<0\rightarrow \varTheta>0\left\{ {{\begin{array}{l} {q^{*}<0\left| {q^{*}>0,p^{*}<0} \right. \rightarrow \hbox {Untable}} \\ {q^{*}>0\, \& \,p^{*}>0\rightarrow \hbox {Stable}} \\ \end{array} }} \right. } \\ {\frac{\hbox {d}a}{\hbox {d}\sigma }>0\rightarrow \varTheta<0\left\{ {{\begin{array}{l} {q^{*}<0\left| {q^{*}>0,p^{*}<0} \right. \rightarrow \hbox {Untable}} \\ {q^{*}>0\, \& \,p^{*}>0\rightarrow \hbox {Stable}} \\ \end{array} }} \right. } \\ \end{array} }} \right. } \\ \end{array} }} \right. .\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \end{aligned}$$
(A.18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Q., Li, Y., Huang, M. et al. Estimation of dynamic behaviors of hydraulic forging press machine in slow-motion manufacturing process. Nonlinear Dyn 96, 339–362 (2019). https://doi.org/10.1007/s11071-019-04793-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04793-1

Keywords

Navigation