Skip to main content
Log in

Nonlinear dynamics of micromechanical resonator arrays for mass sensing

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the mass sensing capability of an array of a few identical electrostatically actuated microbeams, as a first step toward the implementation of arrays of thousands of such resonant sensors. A reduced-order model is considered, and Taylor series are used to simplify the nonlinear electrostatic force. Then, the harmonic balance method associated with the asymptotic numerical method, as well as time integration or averaging methods, is applied to this model, and its results are compared. In this paper, two- and three-beam arrays are studied. The predicted responses exhibit complex branches of solutions with additional loops due to the influence of adjacent beams. Moreover, depending on the applied voltages, the solutions with and without added mass exhibit large differences in amplitude which can be used for detection. For symmetric configurations, the symmetry breaking induced by an added mass is exploited to improve mass sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Kacem, N., Baguet, S., Hentz, S., Dufour, R.: Nonlinear phenomena in nanomechanical resonators: mechanical behaviors and physical limitations. Mech. Ind. 11(6), 521–529 (2010)

    Google Scholar 

  2. Saghafi, M., Dankowicz, H., Lacarbonara, W.: Nonlinear tuning of microresonators for dynamic range enhancement. Proc. R. Soc. Lond. Ser. A 471(2179), 20140969 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, Berlin (2011)

    Book  Google Scholar 

  4. Narducci, M., Figueras, E., Lopez, M.J., Gracia, I., Santander, J., Ivanov, P., Fonseca, L., Cané, C.: Sensitivity improvement of a microcantilever based mass sensor. Microelectron. Eng. 86(4–6), 1187–1189 (2009)

    Article  Google Scholar 

  5. Dohn, S., Sandberg, R., Svendsen, W., Boisen, A.: Enhanced functionality of cantilever based mass sensors using higher modes and functionalized particles. In: Solid-State Sensors, Actuators and Microsystems TRANSDUCERS ’05., vol. 1, pp. 636–639 (2005)

  6. Xie, H., Vitard, J., Haliyo, S., Régnier, S.: Enhanced sensitivity of mass detection using the first torsional mode of microcantilevers. Meas. Sci. Technol. 19(5), 055207 (2008)

    Article  Google Scholar 

  7. Eichler, A., Moser, J., Dykman, M.I., Bachtold, A.: Symmetry breaking in a mechanical resonator made from a carbon nanotube. Nat. Commun. 4, 2843 (2013)

    Article  Google Scholar 

  8. Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro- and nanoresonators. J. Dyn. Syst. Meas. Contr. 132(3), 034001 (2010)

    Article  Google Scholar 

  9. Younis, M.I., Alsaleem, F.: Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. J. Comput. Nonlinear Dyn. 4(2), 021010 (2009)

    Article  Google Scholar 

  10. Ruzziconi, L., Lenci, S., Younis, M.I.: An imperfect microbeam under an axial load and electric excitation: nonlinear phenomena and dynamical integrity. Int. J. Bifurc. Chaos 23(02), 1350026 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kumar, V., Boley, J.W., Yang, Y., Ekowaluyo, H., Miller, J.K., Chiu, G.T.-C., Rhoads, J.F.: Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers. Appl. Phys. Lett. 98(15), 153510 (2011)

    Article  Google Scholar 

  12. Nguyen, V.-N., Baguet, S., Lamarque, C.-H., Dufour, R.: Bifurcation-based micro-/nano-electromechanical mass detection. Nonlinear Dyn. 79(1), 647–662 (2014)

    Article  Google Scholar 

  13. Zhang, W., Turner, K.L.: Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sens. Actuators A 122(1), 23–30 (2005)

    Article  Google Scholar 

  14. Thomas, O., Mathieu, F., Mansfield, W., Huang, C., Trolier-McKinstry, S., Nicu, L.: Efficient parametric amplification in micro-resonators with integrated piezoelectric actuation and sensing capabilities. Appl. Phys. Lett. 102(16), 163504 (2013)

    Article  Google Scholar 

  15. Kacem, N., Baguet, S., Duraffourg, L., Jourdan, G., Dufour, R., Hentz, S.: Overcoming limitations of nanomechanical resonators with simultaneous resonances. Appl. Phys. Lett. 107(7), 073105 (2015)

    Article  Google Scholar 

  16. Peng, H.B., Chang, C.W., Aloni, S., Yuzvinsky, T.D., Zettl, A.: Ultrahigh frequency nanotube resonators. Phys. Rev. Lett. 97, 087203 (2006)

    Article  Google Scholar 

  17. Hanay, M.S., Kelber, S., Naik, A.K., Chi, D., Hentz, S., Bullard, E.C., Colinet, E., Duraffourg, L., Roukes, M.L.: Single-protein nanomechanical mass spectrometry in real time. Nat. Nanotechnol. 7, 602–608 (2012)

    Article  Google Scholar 

  18. Buks, E., Roukes, M.L.: Electrically tunable collective response in a coupled micromechanical array. J. Microelectromech. Syst. 11(6), 802–807 (2002)

    Article  Google Scholar 

  19. Lifshitz, R., Cross, M.C.: Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays. Phys. Rev. B 67, 134302 (2003)

    Article  Google Scholar 

  20. Cross, M.C., Zumdieck, A., Lifshitz, R., Rogers, J.L.: Synchronization by nonlinear frequency pulling. Phys. Rev. Lett. 93, 224101 (2004)

    Article  Google Scholar 

  21. Porfiri, M.: Vibrations of parallel arrays of electrostatically actuated microplates. J. Sound Vib. 315(4), 1071–1085 (2008)

    Article  Google Scholar 

  22. Karabalin, R.B., Cross, M.C., Roukes, M.L.: Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Phys. Rev. B 79, 165309 (2009)

    Article  Google Scholar 

  23. Gutschmidt, S., Gottlieb, O.: Nonlinear internal resonances of a microbeam array near the pull-in point. In: Proceedings of the ENOC-2008, Saint Petersburg, June, 30–July, 4 (2008)

  24. Gutschmidt, S., Gottlieb, O.: Internal resonances and bifurcations of an array below the first pull-in instability. Int. J. Bifurc. Chaos 20(3), 605–618 (2010)

    Article  MATH  Google Scholar 

  25. Gutschmidt, S., Gottlieb, O.: Bifurcations and loss of orbital stability in nonlinear viscoelastic beam arrays subject to parametric actuation. J. Sound Vib. 329, 3835–3855 (2010)

    Article  Google Scholar 

  26. Gutschmidt, S., Gottlieb, O.: Nonlinear dynamic behavior of a microbeam array subject to parametric actuation at low, medium and large dc-voltages. Nonlinear Dyn. 67(1), 1–36 (2012)

    Article  MATH  Google Scholar 

  27. Kambali, P.N., Swain, G., Pandey, A.K., Buks, E., Gottlieb, O.: Coupling and tuning of modal frequencies in direct current biased microelectromechanical systems arrays. Appl. Phys. Lett. 107(6), 063104 (2015)

    Article  Google Scholar 

  28. Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.: A reduced-order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst. 12(5), 672–680 (2003)

    Article  Google Scholar 

  29. Kacem, N., Arcamone, J., Perez-Murano, F., Hentz, S.: Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive nems gas/mass sensor applications. J. Micromech. Microeng. 20(4), 045023 (2010)

    Article  Google Scholar 

  30. Kacem, N., Baguet, S., Hentz, S., Dufour, R.: Computational and quasi-analytical models for non-linear vibrations of resonant MEMS and NEMS sensors. Int. J. Non Linear Mech. 46(3), 532–542 (2011)

    Article  Google Scholar 

  31. Sansa, M., Nguyen, V.-N., Baguet, S., Lamarque, C.-H., Dufour, R., Hentz, S.: Real time sensing in the non linear regime of nems resonators. In: 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1050–1053, Jan 24–28 (2016)

  32. Walter, V., Bourbon, G., Le Moal, P., Kacem, N., Lardis, J.: Electrostatic actuation to counterbalance the manufacturing defects in a mems mass detection sensor using mode localization. Procedia Eng. 168, 1488–1491 (2016)

    Article  Google Scholar 

  33. Ruzziconi, L., Bataineh, A.M., Younis, M.I., Cui, W., Lenci, S.: Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: experimental investigation and reduced-order modeling. J. Micromech. Microeng. 23(7), 075012 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Institute Carnot Ingénierie@Lyon for its support and funding of the NEMROD project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Baguet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix A: Reduced-order model

The non-dimensional equation of motion for beam s is

$$\begin{aligned}&\dfrac{\partial ^4 w_s }{\partial x^4 } + \dfrac{\partial ^2 w_s }{\partial t^2} + c \dfrac{\partial w_s}{\partial t}- \Big [N + \alpha _1 \int _0^1 \! \big ( \dfrac{\partial w}{\partial x} \big )^2 \, \mathrm {d}x \Big ] \dfrac{\partial ^2 w_s }{\partial x^2}\nonumber \\&\quad =\alpha _2 \frac{V_{s,s+1}^2}{\big (1+w_{s+1}-w_{s} \big )^2} - \alpha _2 \frac{V_{s-1,s}^2}{\big ( 1+w_{s}-w_{s-1}\big )^2}. \end{aligned}$$
(28)

By using the Galerkin method and seventh-order Taylor series, Eq. 28 is replaced by a set of equations in the following matrix form:

$$\begin{aligned}&\ddot{{{\varvec{a}}}}^s + {{\varvec{C}}}_0 {\dot{{{\varvec{a}}}}}^s + {{\varvec{K}}}_0 {{\varvec{a}}}^s - \big ( N+ \alpha _1 T_2^s({{\varvec{a}}}^s) \big ) {{\varvec{K}}}_T {{\varvec{a}}}^s \nonumber \\&\quad =\alpha _2 V_{s,s+1}^2 {{\varvec{Q}}}_0 \nonumber \\&\qquad +\,\alpha _2 V_{s,s+1}^2 \bigg [ {{\varvec{Q}}}_1 + {{\varvec{Q}}}_2^s({{\varvec{b}}}^s)+ {{\varvec{Q}}}_3^s({{\varvec{b}}}^s) +{{\varvec{Q}}}_4^s({{\varvec{b}}}^s) + {{\varvec{Q}}}_5^s({{\varvec{b}}}^s) \nonumber \\&\qquad +\,{{\varvec{Q}}}_6^s({{\varvec{b}}}^s) + {{\varvec{Q}}}_7^s({{\varvec{b}}}^s) \bigg ] {{\varvec{b}}}^s - \alpha _2 V_{s-1,s} V_{s-1,s}^2 {{\varvec{P}}}_0 \nonumber \\&\qquad -\, \alpha _2 V_{s-1,s}^2 \bigg [ {{\varvec{P}}}_1+ {{\varvec{P}}}_2^s({{\varvec{b}}}^{s-1}) + {{\varvec{P}}}_3^s({{\varvec{b}}}^{s-1})\nonumber \\&\qquad +\,{{\varvec{P}}}_4^s({{\varvec{b}}}^{s-1}) + {{\varvec{P}}}_5^s({{\varvec{b}}}^{s-1}) + {{\varvec{P}}}_6^s ({{\varvec{b}}}^{s-1})+ {{\varvec{P}}}_7^s({{\varvec{b}}}^{s-1}) \bigg ] {{\varvec{b}}}^{s-1}. \nonumber \\ \end{aligned}$$
(29)

The components of the matrices are given by

$$\begin{aligned}&{{{\varvec{C}}}_0}_{ij} = c_i \delta _{ij}, \quad {{{\varvec{K}}}_0}_{ij}= \lambda _i^4 \delta _{ij}, \quad \\&T_2^s({{\varvec{a}}}^s)= \sum _{k=1}^{N_m} \sum _{l=1}^{N_m} \left( \int _0^1 \, \phi _k' \phi _l' \! \mathrm {d}x\right) {{\varvec{a}}}_k^s {{\varvec{a}}}_l^s,\\&{{\varvec{K}}}_{Tij} = \int _0^1 \, \phi _j'' \phi _i \! \mathrm {d}x , \quad {{\varvec{Q}}}_{0i}^s = \int _0^1 \, \phi _i \! \mathrm {d}x ,\\&{{\varvec{Q}}}_{1ij}^s= -2\int _0^1 \, \phi _i \phi _j \! \mathrm {d}x , \quad \\&{{\varvec{Q}}}_{2ij}^s= 3\sum _{k=1}^{N_m} \left( \int _0^1 \, \phi _i \phi _j \phi _k \! \mathrm {d}x \right) {{\varvec{b}}}_k^{s},\\&{{\varvec{Q}}}_{3ij}^s=-4\sum _{k=1}^{N_m} \sum _{l=1}^{N_m} \left( \int _0^1 \, \phi _i \phi _j \phi _k \phi _l \! \mathrm {d}x \right) {{\varvec{b}}}_k^{s}{{\varvec{b}}}_l^s, \\&{{\varvec{Q}}}_{4ij}^s=5\sum _{k=1}^{N_m} \sum _{l=1}^{N_m}\sum _{m=1}^{N_m} \left( \int _0^1 \, \phi _i \phi _j \phi _k \phi _l \phi _m\! \mathrm {d}x \right) {{\varvec{b}}}_k^{s}{{\varvec{b}}}_l^s {{\varvec{b}}}_m^s, \\&{{\varvec{Q}}}_{5ij}^s=-6\sum _{k=1}^{N_m} \sum _{l=1}^{N_m}\sum _{m=1}^{N_m}\sum _{n=1}^{N_m} \\&\qquad \qquad \times \,\left( \int _0^1 \, \phi _i \phi _j \phi _k \phi _l \phi _m \phi _n \! \mathrm {d}x \right) {{\varvec{b}}}_k^{s}{{\varvec{b}}}_l^s {{\varvec{b}}}_m^s {{\varvec{b}}}_n^s, \\&{{\varvec{Q}}}_{6ij}^s=7\sum _{k=1}^{N_m} \sum _{l=1}^{N_m}\sum _{m=1}^{N_m}\sum _{n=1}^{N_m}\sum _{o=1}^{N_m} \left( \int _0^1 \, \phi _i \phi _j \phi _k \phi _l \phi _m \phi _n \phi _o \! \mathrm {d}x \right) \\&\qquad \qquad \times \,{{\varvec{b}}}_k^{s}{{\varvec{b}}}_l^s {{\varvec{b}}}_m^s {{\varvec{b}}}_n^s {{\varvec{b}}}_o^s, \\&{{\varvec{Q}}}_{7ij}^s=-8\sum _{k=1}^{N_m} \sum _{l=1}^{N_m}\sum _{m=1}^{N_m}\sum _{n=1}^{N_m}\sum _{o=1}^{N_m} \sum _{p=1}^{N_m}\\&\qquad \qquad \times \,\left( \int _0^1 \, \phi _i \phi _j \phi _k \phi _l \phi _m \phi _n \phi _o \phi _p \! \mathrm {d}x \right) {{\varvec{b}}}_k^{s}{{\varvec{b}}}_l^s {{\varvec{b}}}_m^s {{\varvec{b}}}_n^s {{\varvec{b}}}_o^s{{\varvec{b}}}_p^s, \\&{{\varvec{P}}}_{0i} = \int _0^1 \, \phi _i \! \mathrm {d}x , \, \,{{\varvec{P}}}_{1ij}= -2\int _0^1 \, \phi _i \phi _j \! \mathrm {d}x ,\, \\&{{\varvec{P}}}_{2ij}^s= 3\sum _{k=1}^{N_m} \left( \int _0^1 \, \phi _i \phi _j \phi _k \! \mathrm {d}x \right) {{\varvec{b}}}_k^{s-1}, \\&{{\varvec{P}}}_{3ij}^s=-4\sum _{k=1}^{N_m} \sum _{l=1}^{N_m} \left( \int _0^1 \, \phi _i \phi _j \phi _k \phi _l \! \mathrm {d}x \right) {{\varvec{b}}}_k^{s-1}{{\varvec{b}}}_l^{s-1},\\&{{\varvec{P}}}_{4ij}^s=5\sum _{k=1}^{N_m} \sum _{l=1}^{N_m}\sum _{m=1}^{N_m} \left( \int _0^1 \, \phi _i \phi _j \phi _k \phi _l \phi _m\! \mathrm {d}x \right) \\&\qquad \qquad \times \,{{\varvec{b}}}_k^{s-1}{{\varvec{b}}}_l^{s-1} {{\varvec{b}}}_m^{s-1}, \\&{{\varvec{P}}}_{5ij}^s=-6\sum _{k=1}^{N_m} \sum _{l=1}^{N_m}\sum _{m=1}^{N_m}\sum _{n=1}^{N_m} \left( \int _0^1 \, \phi _i \phi _j \phi _k \phi _l \phi _m \phi _n \! \mathrm {d}x \right) \\&\qquad \qquad \times \,{{\varvec{b}}}_k^{s-1}{{\varvec{b}}}_l^{s-1} {{\varvec{b}}}_m^{s-1} {{\varvec{b}}}_n^{s-1},\\&{{\varvec{P}}}_{6ij}^s=7\sum _{k=1}^{N_m} \sum _{l=1}^{N_m}\sum _{m=1}^{N_m}\sum _{n=1}^{N_m}\sum _{o=1}^{N_m} \left( \int _0^1 \, \phi _i \phi _j \phi _k \phi _l \phi _m \phi _n \phi _o \! \mathrm {d}x \right) \\&\qquad \qquad \times \,{{\varvec{b}}}_k^{s-1}{{\varvec{b}}}_l^{s-1} {{\varvec{b}}}_m^{s-1} {{\varvec{b}}}_n^{s-1} {{\varvec{b}}}_o^{s-1}, \\&{{\varvec{P}}}_{7ij}^s=-8\sum _{k=1}^{N_m} \sum _{l=1}^{N_m}\sum _{m=1}^{N_m}\sum _{n=1}^{N_m}\sum _{o=1}^{N_m} \sum _{p=1}^{N_m}\\&\qquad \qquad \times \,\left( \int _0^1 \, \phi _i \phi _j \phi _k \phi _l \phi _m \phi _n \phi _o \phi _p \! \mathrm {d}x \right) \\&\qquad \qquad \times \,{{\varvec{b}}}_k^{s-1}{{\varvec{b}}}_l^{s-1} {{\varvec{b}}}_m^{s-1} {{\varvec{b}}}_n^{s-1} {{\varvec{b}}}_o^{s-1}{{\varvec{b}}}_p^{s-1}, \\&\qquad \qquad \text {with } i,j=1,\ldots ,N_m. \end{aligned}$$

Appendix B: Averaging method for a two-beam array

The Galerkin method with the fundamental mode is used as follows

$$\begin{aligned} w_1(x,t)= & {} \phi _1(x) a_{11}(t) \nonumber \\ w_2(x,t)= & {} \phi _1(x) a_{21}(t), \end{aligned}$$
(30)

and the first-order Taylor series for the electrostatic forces is as follows

$$\begin{aligned} \dfrac{1}{(1+w_{s+1}-w_s)^2}= 1-2(w_{s+1}-w_s), \nonumber \\ \dfrac{1}{(1+w_s-w_{s-1})^2}= 1-2(w_s-w_{s-1}). \end{aligned}$$
(31)

Eq. (15) becomes

$$\begin{aligned}&\ddot{ a}_{11} {+} c {\dot{a}}_{11} {+} \omega _1 a_{11} {+} \beta _{11} a_{11}^3 {+} \big (\beta _{12} \cos \varOmega t {+} \beta _{13} \cos ^2\varOmega t \big ) a_{11} \nonumber \nonumber \\&\quad +\,\big ( \delta _{11} +\delta _{12}\cos \varOmega t + \delta _{13} \cos ^2 \varOmega t \big ) a_{21} \nonumber \\&\quad +\, \big (\gamma _{11} + \gamma _{12} \cos \varOmega t + \gamma _{13} \cos ^2\varOmega t \big ) =0 \end{aligned}$$
(32)
$$\begin{aligned}&\ddot{a}_{21} {+} c{\dot{a}}_{21} {+} \omega _2 a_{21} {+} \beta _{21} a_{21}^3 {+}\,\big (\beta _{22} \cos \varOmega t {+} \beta _{23} \cos ^2\varOmega t \big ) a_{21} \nonumber \\&\quad +\,\big ( \delta _{21} +\delta _{22}\cos \varOmega t + \delta _{23} \cos ^2 \varOmega t \big ) a_{11} \nonumber \\&\quad +\,\big (\gamma _{21} + \gamma _{22} \cos \varOmega t + \gamma _{23} \cos ^2\varOmega t \big ) =0 \end{aligned}$$
(33)

where

$$\begin{aligned} \beta _{s1}= & {} 151.35 \alpha _1; \, \\ \beta _{s2}= & {} -4\alpha _2\big (V_{\mathrm{dc}_{s,s+1}}V_{\mathrm{ac}_{s,s+1}} + V_{\mathrm{dc}_{s-1,s}}V_{\mathrm{ac}_{s-1,s}} \big ); \\ \beta _{s3}= & {} -2\alpha _2 \big (V_{\mathrm{ac}_{s-1,s}}^2 {+} V_{\mathrm{ac}_{s,s+1}}^2 \big );\quad \delta _{11}{=}\delta _{21} {=}2\alpha _2 V_{\mathrm{dc}_{12}}^2; \\ \delta _{12}= & {} \delta _{22}=4\alpha _2 V_{\mathrm{dc}_{12}}V_{\mathrm{ac}_{12}}; \\ \delta _{13}= & {} \delta _{23} = 2\alpha _2V_{\mathrm{ac}_{12}}^2; \,\\ \gamma _{s1}= & {} 0.83 \alpha _2 \big ( V_{\mathrm{dc}_{s,s+1}}^2-V_{\mathrm{dc}_{s-1,s}}^2 \big ); \\ \gamma _{s2}= & {} 1.66 \alpha _2 \big ( V_{\mathrm{dc}_{s,s+1}}V_{\mathrm{ac}_{s,s+1}} - V_{\mathrm{dc}_{s-1,s}}V_{\mathrm{ac}_{s-1,s}} \big ); \\ \gamma _{s3}= & {} 0.83 \alpha _2 \big (V_{\mathrm{ac}_{s,s+1}}^2 - V_{\mathrm{ac}_{s-1,s}}^2 \big ) \\ \end{aligned}$$

and \(s=1,2\).

Let the relation between \(\varOmega \) and \(\omega _s\) be

$$\begin{aligned} \varOmega =\omega _s+\varepsilon \sigma _{s}, \end{aligned}$$
(34)

where \(\omega _s\) is determined by

$$\begin{aligned} \omega _s= \dfrac{\lambda _s^4- 2\alpha _2 \big ( V_{\mathrm{dc}_{s,s+12}}^2 + V_{\mathrm{dc}_{s-1,s}}^2 \big )}{1+ \delta _{s_0}(s) m \phi _1(x_0)^2}. \end{aligned}$$
(35)

Appendix C: Three-beam array with asymmetric voltages

The voltages used for the asymmetric three-beam array are given in Table 4, and the responses are plotted in Fig. 19.

Table 4 Asymmetric actuation voltages of the three-beam array
Fig. 19
figure 19

Design # 4. Responses of the three-beam array without added mass. a Beam #1; b Beam #2; c Beam #3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baguet, S., Nguyen, VN., Grenat, C. et al. Nonlinear dynamics of micromechanical resonator arrays for mass sensing. Nonlinear Dyn 95, 1203–1220 (2019). https://doi.org/10.1007/s11071-018-4624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4624-0

Keywords

Navigation