Skip to main content
Log in

Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper reports the finding of unusual hidden and self-excited coexisting dynamical behaviors in an existing Lorenz-like system. For different parameters, the system has different types of equilibrium points, such as saddle-nodes, stable focus-nodes, saddle-foci and nonhyperbolic equilibrium points, which can be used to find different types of hidden and self-excited attractors. The different types of attractors have been vividly demonstrated by several numerical techniques including phase portraits, bifurcation diagrams and basins of attraction. Very interestingly, we find the rare coexistence of chaotic attractor and periodic orbits in the Lorenz-like system with two saddle-foci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130 (1963)

    Article  MATH  Google Scholar 

  2. Kapitaniak, M., Lazarek, M., Nielaczny, M., Czolczynski, K., Perlikowski, P., Kapitaniak, T.: Synchronization extends the life time of the desired behavior of globally coupled systems. Sci. Rep. 4, 4391 (2014)

    Article  Google Scholar 

  3. Menck, P.J., Heitzig, J., Kurths, J., Schellnhuber, H.J.: How dead ends undermine power grid stability. Nat. Commun. 5, 3969 (2014)

    Article  Google Scholar 

  4. Zhusubaliyev, Z.T., Mosekilde, E.: Multistability and hidden attractors in a multilevel DC/DC converter. Math. Comput. Simul. 109, 32 (2015)

    Article  MathSciNet  Google Scholar 

  5. Kuznetsov, N.V.: AETA 2015: Recent Advances in Electrical Engineering and Related Sciences, pp. 13–25. Springer, Berlin (2016)

    Book  Google Scholar 

  6. Vaidyanathan, S., Sambas, A., Mamat, M., Sanjaya, W.M.: A new three-dimensional chaotic system with a hidden attractor, circuit design and application in wireless mobile robot. Arch. Control Sci. 27(4), 541 (2017)

    Article  MathSciNet  Google Scholar 

  7. Kuznetsov, N.V., Leonov, G.A., Vagaitsev, V.I.: Analytical-numerical method for attractor localization of generalized Chua’s system. IFAC Proc. Vol. 43(11), 29 (2010)

    Article  Google Scholar 

  8. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9(07), 1465 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397 (1976)

    Article  MATH  Google Scholar 

  10. Cang, S., Wu, A., Wang, Z., Xue, W., Chen, Z.: Birth of one-to-four-wing chaotic attractors in a class of simplest three-dimensional continuous memristive systems. Nonlinear Dyn. 83(4), 1987 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cang, S., Wu, A., Wang, Z., Wang, Z., Chen, Z.: A general method for exploring three-dimensional chaotic attractors with complicated topological structure based on the two-dimensional local vector field around equilibriums. Nonlinear Dyn. 83(1), 1069 (2016)

    Article  MathSciNet  Google Scholar 

  12. Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pham, V.T., Jafari, S., Kapitaniak, T., Volos, C., Kingni, S.T.: Generating a chaotic system with one stable equilibrium. Int. J. Bifurc. Chaos 27(04), 1750053 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bao, J., Chen, D.: Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium. Chin. Phys. B 26(8), 080201 (2017)

    Article  Google Scholar 

  15. Molaie, M., Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Simple chaotic flows with one stable equilibrium. Int. J. Bifurc. Chaos 23(11), 1350188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, X., Chen, G.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1264 (2012)

    Article  MathSciNet  Google Scholar 

  17. Bao, B., Li, Q., Wang, N., Xu, Q.: Multistability in Chua’s circuit with two stable node-foci, chaos: an interdisciplinary. J. Nonlinear Sci. 26(4), 043111 (2016)

    Google Scholar 

  18. Barati, K., Jafari, S., Sprott, J.C., Pham, V.T.: Simple chaotic flows with a curve of equilibria. Int. J. Bifurc. Chaos 26(12), 1630034 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jafari, S., Sprott, J.: Simple chaotic flows with a line equilibrium. Chaos Solitons Fractals 57, 79 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jafari, S., Sprott, J.C., Molaie, M.: A simple chaotic flow with a plane of equilibria. Int. J. Bifurc. Chaos 26(06), 1650098 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, Z., Cang, S., Ochola, E.O., Sun, Y.: A hyperchaotic system without equilibrium. Nonlinear Dyn. 69(1–2), 531 (2012)

    Article  MathSciNet  Google Scholar 

  22. Feng, Y., Pan, W.: Hidden attractors without equilibrium and adaptive reduced-order function projective synchronization from hyperchaotic Rikitake system. Pramana 88(4), 62 (2017)

    Article  Google Scholar 

  23. Pham, V.T., Volos, C., Jafari, S., Kapitaniak, T.: Coexistence of hidden chaotic attractors in a novel no-equilibrium system. Nonlinear Dyn. 87(3), 2001 (2017)

    Article  MATH  Google Scholar 

  24. Jafari, S., Pham, V.T., Kapitaniak, T.: Multiscroll chaotic sea obtained from a simple 3D system without equilibrium. Int. J. Bifurc. Chaos 26(02), 1650031 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Signing, V.F., Kengne, J.: Coexistence of hidden attractors, 2-torus and 3-torus in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity. Int. J. Dyn. Control (2018). https://doi.org/10.1007/s40435-017-0392-9

  26. Leutcho, G., Kengne, J., Kengne, L.K.: Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: chaos, antimonotonicity and a plethora of coexisting attractors. Chaos Solitons Fractals 107, 67 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rajagopal, K., Jafari, S., Karthikeyan, A., Srinivasan, A., Ayele, B.: Hyperchaotic memcapacitor oscillator with infinite equilibria and coexisting attractors. Circuits Syst. Signal Process. 37, 1–23 (2018). https://doi.org/10.1007/s00034-018-0750-7

    Article  MathSciNet  Google Scholar 

  28. Liu, Y., Chávez, J.P.: Controlling coexisting attractors of an impacting system via linear augmentation. Phys. D Nonlinear Phenom. 348, 1 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sprott, J.C., Jafari, S., Khalaf, A.J.M., Kapitaniak, T.: Megastability: coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping. Eur. Phys. J. Spec. Top. 226(9), 1979 (2017)

    Article  Google Scholar 

  30. Wang, X., Vaidyanathan, S., Volos, C., Pham, V.T., Kapitaniak, T.: Dynamics, circuit realization, control and synchronization of a hyperchaotic hyperjerk system with coexisting attractors. Nonlinear Dyn. 89(3), 1673 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sharma, P., Shrimali, M., Prasad, A., Kuznetsov, N., Leonov, G.: Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1485 (2015)

    Article  Google Scholar 

  32. Kuznetsov, N., Leonov, G.: Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors. IFAC Proc. Vol. 47(3), 5445 (2014)

    Article  Google Scholar 

  33. Lozi, R., Ushiki, S.: Coexisting chaotic attractors in Chua’s circuit. Int. J. Bifurc. Chaos 1(04), 923 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bao, B., Hu, F., Chen, M., Xu, Q., Yu, Y.: Self-excited and hidden attractors found simultaneously in a modified Chua’s circuit. Int. J. Bifurc. Chaos 25(05), 1550075 (2015)

    Article  MATH  Google Scholar 

  35. Chen, M., Li, M., Yu, Q., Bao, B., Xu, Q., Wang, J.: Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dyn. 81(1–2), 215 (2015)

    Article  MathSciNet  Google Scholar 

  36. Chen, M., Yu, J., Bao, B.C.: Finding hidden attractors in improved memristor-based Chua‘s circuit. Electron. Lett. 51(6), 462 (2015)

    Article  Google Scholar 

  37. Munmuangsaen, B., Srisuchinwong, B.: A hidden chaotic attractor in the classical Lorenz system. Chaos Solitons Fractals 107, 61 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yuan, Q., Yang, F.Y., Wang, L.: A note on hidden transient chaos in the \(l\)orenz system. Int. J. Nonlinear Sci. Numer. Simul. 18(5), 427 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurc. Chaos 24(03), 1450034 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Leonov, G., Kuznetsov, N., Mokaev, T.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224(8), 1421 (2015)

    Article  Google Scholar 

  41. Chen, G., Kuznetsov, N., Leonov, G., Mokaev, T.: Hidden attractors on one path: Glukhovsky–Dolzhansky, Lorenz, and Rabinovich systems. Int. J. Bifurc. Chaos 27(08), 1750115 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wei, Z., Zhang, W.: Hidden hyperchaotic attractors in a modified Lorenz–Stenflo system with only one stable equilibrium. Int. J. Bifurc. Chaos 24(10), 1450127 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Leonov, G., Kuznetsov, N., Mokaev, T.: Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear Sci. Numer. Simul. 28(1–3), 166 (2015)

    Article  MathSciNet  Google Scholar 

  44. Yang, Q., Chen, G.: A chaotic system with one saddle and two stable node-foci. Int. J. Bifurc. Chaos 18(05), 1393 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, vol. 41. Springer, Berlin (2012)

    MATH  Google Scholar 

  46. van der Schrier, G., Maas, L.R.: The diffusionless Lorenz equations, Shilnikov bifurcations and reduction to an explicit map. Phys. D Nonlinear Phenom. 141(1–2), 19 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Huang, D.: Periodic orbits and homoclinic orbits of the diffusionless Lorenz equations. Phys. Lett. A 309(3–4), 248 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, Q., Wei, Z., Chen, G.: An unusual 3D autonomous quadratic chaotic system with two stable node-foci. Int. J. Bifurc. Chaos 20(04), 1061 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wituła, R., Słota, D.: Cardano’s formula, square roots, Chebyshev polynomials and radicals. J. Math. Anal. Appl. 363(2), 639 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Chang, T.S., Chen, C.T.: On the Routh–Hurwitz criterion. IEEE Trans. Autom. Control 19(3), 250 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kuznetsov, N., Leonov, G., Mokaev, T., Seledzhi, S.: In: AIP Conference Proceedings, vol. 1738, p. 210008. AIP Publishing (2016)

Download references

Acknowledgements

We would like to thank the anonymous referees for their valuable suggestions and questions. This work is partly supported by the National Natural Science Foundation of China (Grant Nos. 61873186 and 61773282), the Application Base and Frontier Technology Research Project of Tianjin of China (Grant No. 13JCQNJC03600) and South African National Research Foundation (Grant Nos. 112142 and 112108), South African National Research Foundation Incentive Grant (No. 114911) and Tertiary Education Support Programme (TESP) of South African ESKOM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijian Cang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cang, S., Li, Y., Zhang, R. et al. Hidden and self-excited coexisting attractors in a Lorenz-like system with two equilibrium points. Nonlinear Dyn 95, 381–390 (2019). https://doi.org/10.1007/s11071-018-4570-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4570-x

Keywords

Navigation