Skip to main content
Log in

Nonlinear dynamic analysis for machine tool table system mounted on linear guides

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a three-degree-of-freedom dynamic model of a machine tool table system considering nonlinear contact behaviors is established to obtain vibration characteristics. The relationship between contact deformation and force is derived via Hertz contact theory, and piecewise nonlinear interaction forces are obtained. Then, dynamic differential equations of the three-degree-of-freedom system are constructed. The numerical simulations are solved by Runge–Kutta integration method to investigate the dynamic behaviors of the dynamic system. When the system is under a small excitation force, it exhibits softening nonlinear behavior in the primary resonance region. With excitation amplitude increasing to a larger value, the system exhibits hardening nonlinear behavior. In order to better investigate the effects of excitation amplitude, excitation angle, installation distance and height of work piece on the vibration characteristics, frequency–amplitude curves, 3-D frequency spectrum, time history, frequency domain, phase diagram and Poincare section are employed. Jump discontinuity phenomenon, super-harmonic resonance and varied frequency components are dependent on the key parameters. Some conclusions are drawn to suppress the vibration of machining process and improve the quality of work piece.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang, G.P., Huang, Y.M., Shi, W.H., Fu, W.P.: Predicting dynamic behaviours of a whole machine tool structure based on computer-aided engineering. Int. J. Mach. Tools Manuf. 43(7), 699–706 (2003). https://doi.org/10.1016/S0890-6955(03)00026-9

    Article  Google Scholar 

  2. Hung, J.-P., Lai, Y.-L., Lin, C.-Y., Lo, T.-L.: Modeling the machining stability of a vertical milling machine under the influence of the preloaded linear guide. Int. J. Mach. Tools Manuf. 51(9), 731–739 (2011). https://doi.org/10.1016/j.ijmachtools.2011.05.002

    Article  Google Scholar 

  3. Wu, J.S.-S., Chang, J.-C., Hung, J.-P.: The effect of contact interface on dynamic characteristics of composite structures. Math. Comput. Simul. 74(6), 454–467 (2007). https://doi.org/10.1016/j.matcom.2006.07.003

    Article  MathSciNet  MATH  Google Scholar 

  4. Sun, W., Kong, X., Wang, B., Li, X.: Statics modeling and analysis of linear rolling guideway considering rolling balls contact. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 229(1), 168–179 (2015). https://doi.org/10.1177/0954406214531943

    Article  Google Scholar 

  5. Kong, X., Sun, W., Wang, B., Wen, B.: Dynamic and stability analysis of the linear guide with time-varying, piecewise-nonlinear stiffness by multi-term incremental harmonic balance method. J. Sound Vib. 346(1), 265–283 (2015)

    Article  Google Scholar 

  6. Ohta, H., Nakagawa, T.: Using ceramic balls to reduce noise in a linear guideway type recirculating linear ball bearing. J. Tribol. Trans. ASME 125(3), 480–486 (2003). https://doi.org/10.1115/1.1537264

    Article  Google Scholar 

  7. Ohta, H., Iwasaki, S., Kazama, T., Hoshino, K.: Sound of a ball spline operated at a certain linear velocity. Arch. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 1994–1996 (vols. 208–210) 223(1), 17–25 (2009)

    Article  Google Scholar 

  8. Shimizu, S., Saito, E., Uchida, H., Sharma, C.S., Taki, Y.: Tribological studies of linear motion ball guide systems. Tribol. Trans. 41(1), 49–59 (1998)

    Article  Google Scholar 

  9. Shimizu, S., Sharma, C.S., Shirai, T.: Life prediction for linear rolling element bearings: a new approach to reliable life assessment. J. Tribol. 124(1), 121–128 (2002)

    Article  Google Scholar 

  10. Shimizu, S., Shimoda, H., Tosha, K.: Study on the life distribution and reliability of roller-based linear bearing. Tribol. Trans. 51(4), 446–453 (2008)

    Article  Google Scholar 

  11. Wei, W., Yimin, Z., Changyou, L., Hao, W., Yanxun, Z.: Effects of wear on dynamic characteristics and stability of linear guides. Meccanica 52(11), 2899–2913 (2017). https://doi.org/10.1007/s11012-016-0605-x

    Article  MathSciNet  Google Scholar 

  12. Zou, H.T., Wang, B.L.: Investigation of the contact stiffness variation of linear rolling guides due to the effects of friction and wear during operation. Tribol. Int. 92, 472–484 (2015)

    Article  Google Scholar 

  13. Ohta, H., Tanaka, K.: Vertical stiffnesses of preloaded linear guideway type ball bearings incorporating the flexibility of the carriage and rail. J. Tribol. 132(1), 547–548 (2010)

    Google Scholar 

  14. Lynagh, N., Rahnejat, H., Ebrahimi, M., Aini, R.: Bearing induced vibration in precision high speed routing spindles. Int. J. Mach. Tools Manuf. 40(4), 561–577 (2000). https://doi.org/10.1016/S0890-6955(99)00076-0

    Article  Google Scholar 

  15. Harsha, S.P., Sandeep, K., Prakash, R.: Nonlinear dynamic response of a rotor bearing system due to surface waviness. Nonlinear Dyn. 37(2), 91–114 (2004). https://doi.org/10.1023/B:NODY.0000042916.10351.ff

    Article  MATH  Google Scholar 

  16. Bai, C., Zhang, H., Xu, Q.: Effects of axial preload of ball bearing on the nonlinear dynamic characteristics of a rotor-bearing system. Nonlinear Dyn. 53(3), 173 (2007). https://doi.org/10.1007/s11071-007-9306-2

    Article  MATH  Google Scholar 

  17. Han, Q., Chu, F.: Nonlinear dynamic model for skidding behavior of angular contact ball bearings. J. Sound Vib. 354, 219–235 (2015). https://doi.org/10.1016/j.jsv.2015.06.008

    Article  Google Scholar 

  18. Zhou, W.Y., Li, D.X.: Design and analysis of an intelligent vibration isolation platform for reaction/momentum wheel assemblies. J. Sound Vib. 331(13), 2984–3005 (2012)

    Article  Google Scholar 

  19. Wang, W., Zhang, Y., Li, C.: Dynamic reliability analysis of linear guides in positioning precision. Mech. Mach. Theory 116, 451–464 (2017). https://doi.org/10.1016/j.mechmachtheory.2017.06.011

    Article  Google Scholar 

  20. Al-Bender, F., Symens, W.: Characterization of frictional hysteresis in ball-bearing guideways. Wear 258(11–12), 1630–1642 (2005). https://doi.org/10.1016/j.wear.2004.11.018

    Article  Google Scholar 

  21. Xi, Y., Zhou, Y., Zhang, W., Mao, J.: An experimental method for measuring friction behaviors of linear rolling guides. Chin. Sci. Bull. 59(29–30), 3912–3918 (2014)

    Article  Google Scholar 

  22. Ohta, H., Kitajima, Y., Kato, S., Igarashi, Y.: Effects of ball groupings on ball passage vibrations of a linear guideway type ball bearing (pitching and yawing ball passage vibrations). J. Tribol. 129(1), 525–532 (2006)

    Google Scholar 

  23. Ohta, H., Kato, S., Matsumoto, J., Nakano, K.: A design of crowning to reduce ball passage vibrations of a linear guideway type recirculating linear ball bearing. J. Tribol. 127(2), 749–755 (2004)

    Google Scholar 

  24. Hung, J.P.: Load effect on the vibration characteristics of a stage with rolling guides. J. Mech. Sci. Technol. 23(1), 89–99 (2009). https://doi.org/10.1007/s12206-008-0925-4

    Article  Google Scholar 

  25. Lin, C.Y., Hung, J.P., Lo, T.L.: Effect of preload of linear guides on dynamic characteristics of a vertical column-spindle system. Int. J. Mach. Tools Manuf. 50(8), 741–746 (2010). https://doi.org/10.1016/j.ijmachtools.2010.04.002

    Article  Google Scholar 

  26. Li, B., Wang, X., Hu, Y., Li, C.: Analytical prediction of cutting forces in orthogonal cutting using unequal division shear-zone model. Int. J. Adv. Manuf. Technol. 54(5), 431–443 (2011). https://doi.org/10.1007/s00170-010-2940-8

    Article  Google Scholar 

  27. Fu, Z., Zhang, X., Wang, X., Yang, W.: Analytical modeling of chatter vibration in orthogonal cutting using a predictive force model. Int. J. Mech. Sci. 88, 145–153 (2014). https://doi.org/10.1016/j.ijmecsci.2014.08.005

    Article  Google Scholar 

  28. Harris, T.: Rolling Bearing Analysis, pp. 13–21. Wiley, New York (1991).

  29. Bizarre, L., Nonato, F., Cavalca, K.L.: Formulation of five degrees of freedom ball bearing model accounting for the nonlinear stiffness and damping of elastohydrodynamic point contacts. Mech. Mach. Theory 124, 179–196 (2018)

    Article  Google Scholar 

Download references

Funding

This study is funded by National Natural Science Foundation of China (Grant No. 51575095), China Postdoctoral Science Foundation (Grant No. 2017M610180) and Major State Basic Research Development Program of China (973 Program) (Grant No. 2014CB046303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Li, C., Zhou, Y. et al. Nonlinear dynamic analysis for machine tool table system mounted on linear guides. Nonlinear Dyn 94, 2033–2045 (2018). https://doi.org/10.1007/s11071-018-4473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4473-x

Keywords

Navigation