Skip to main content

Advertisement

Log in

New integral inequalities and asymptotic stability of fractional-order systems with unbounded time delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The stability analysis of fractional-order systems with unbounded delay remains an open problem. In this paper, we firstly explore two new integral inequalities. Using these two integral inequalities obtained, the Halanay inequality with unbounded delay is extended to Caputo fractional-order case and Riemann–Liouville fractional-order case. Finally, several examples are presented to illustrate the effectiveness and applicability of the fractional Halanay inequalities in obtaining the asymptotic stability conditions of fractional-order systems with unbounded delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)

    MATH  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1998)

    MATH  Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  4. Sun, H.G., Chen, W., Chen, Y.Q.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)

    Article  Google Scholar 

  5. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, London (2010)

    Book  MATH  Google Scholar 

  6. Mainardi, F.: Fractional calculus and Wave in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  7. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: IMACS/IEEE-SMC Multiconference, Symposium on Control, Optimization and Supervision (CESA), pp. 963–968 (1996)

  8. Deng, W.H., Li, C.P., Lü, J.H.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sabatier, J., Moze, M., Farges, C.: LMI stability conditions for fractional order systems. Comput. Math. Appl. 59, 1594–1609 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhou, H.C., Guo, B.Z.: Boundary feedback stabilization for an unstable time fractional reaction diffusion equation. SIAM J. Control Optim. 56, 75–101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choi, S.K., Koo, N.: The monotonic property and stability of solutions of fractional differential equations. Nonlinear Anal. Theor. 74, 6530–6536 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, H., Yu, Y.G., Wen, G.G., Zhang, S., Yu, J.Z.: Global stability analysis of fractional-order Hopfield neural networks with time delay. Neurocomputing 154, 15–23 (2015)

    Article  Google Scholar 

  13. He, B.B., Zhou, H.C., Chen, Y.Q., Kou, C.H.: Asymptotical stability of fractional order systems with time delay via an integral inequality. IET Control Theory Appl. (2018). https://doi.org/10.1049/iet-cta.2017.1144

    Article  Google Scholar 

  14. Lenka, B.K., Banerjee, S.: Sufficient conditions for asymptotic stability and stabilization of autonomous fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 56, 365–379 (2018)

    Article  MathSciNet  Google Scholar 

  15. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Aguila-Camacho, N., Duarte-Mermoud, M., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)

    Article  MathSciNet  Google Scholar 

  18. Liu, S., Wu, X., Zhou, X.F., Jiang, W.: Asymptotical stability of Riemann–Liouville fractional nonlinear systems. Nonlinear Dyn. 86, 65–71 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  20. Lakshmikantham, V., Wen, L., Zhang, B.: Theory of Differential Equations with Unbounded Delay. Kluwer, Dordrecht (1994)

    Book  MATH  Google Scholar 

  21. Fridman, E.: Introduction to Time Delay Systems, Analysis and Control. Springer, Basel (2014)

    Book  MATH  Google Scholar 

  22. Baleanu, D., Sadati, S.J., Ghaderi, R., Ranjbar, A., Abdeljawad, T., Jarad, F.: Razumikhin stability theorem for fractional systems with delay. Abstr. Appl. Anal. (2010). https://doi.org/10.1155/2010/124812

  23. Chen, B., Chen, J.: Razumikhin-type stability theorems for functional fractional-order differential systems and applications. Appl. Math. Comput. 254, 63–69 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Bonnet, C., Partington, J.R.: Analysis of fractional delay systems of retarded and neutral type. Automatica 38, 1133–1138 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bonnet, C., Partington, J.R.: Stabilization of some fractional delay systems of neutral type. Automatica 43, 2047–2053 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, S., Zhou, X.F., Li, X., Jiang, W.: Asymptotical stability of Riemann–Liouville fractional singular systems with multiple time-varying delays. Appl. Math. Lett. 65, 32–39 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, H., Ye, R., Cao, J., Alsaedi, A.: Delay-independent stability of Riemann–Liouville fractional neutral-type delayed neutral networks. Neural Process. Lett. 47, 427–442 (2017)

    Google Scholar 

  28. Wen, L., Yu, Y., Wang, W.: Generalized Halanay inequalities for dissipativity of Volterra functional differential equations. J. Math. Anal. Appl. 347, 169–178 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stamova, I.M.: On the Lyapunov theory for functional differential equations of fractional order. Proc. Am. Math. Soc. 144, 1581–1593 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Thuan, M.V., Huong, D.C.: New results on stabilization of fractional-order nonlinear systems via an LMI approach. Asian J. Control 20, 1–10 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, G.D., Zeng, Z.G.: Exponential stability for a class of memristive neural networks with mixed time-varying delays. Appl. Math. Comput. 321, 544–554 (2018)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Fundamental Research Funds for the Central Universities (No. CUSF-DH-D-2017083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Cheng Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, BB., Zhou, HC., Kou, CH. et al. New integral inequalities and asymptotic stability of fractional-order systems with unbounded time delay. Nonlinear Dyn 94, 1523–1534 (2018). https://doi.org/10.1007/s11071-018-4439-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4439-z

Keywords

Navigation