Skip to main content
Log in

When underwater degraded images meet logical stochastic resonance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Owing to light attenuation and high background noise, underwater images are significantly degraded, which hiders the development of underwater exploration. However, noise itself can be used to counter noise. In this paper, we apply logical stochastic resonance (LSR) to help detect weak objects from low-quality underwater images. On the basis of analysis of the physical character of underwater images, three models, namely basic dynamical system driven by Gaussian noise, basic dynamical system driven by Ornstein–Uhlenbeck (OU) noise, and dynamical system with extra delay loop, are chosen to study the performance of LSR-based object detection. The main workflow of LSR-based object detection is introduced. To analyze the performance of LSR, we perform explicit experiments and systematically discuss the interplay of additional noise with the system parameters. LSR is proven to be helpful in detecting weak objects from low-quality underwater images. Both OU noise and extra delay loop will help the whole system to maintain stability in a higher noisy background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Duntley, S.Q.: Light in the sea. JOSA 53(2), 214 (1963)

    Article  Google Scholar 

  2. Raimondo, S., Silvia, C.: Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J. Adv. Signal Process. 2010(1), 1–15 (2010)

    Google Scholar 

  3. Jaffe, J.S.: Underwater optical imaging: the past, the present, and the prospects. IEEE J. Ocean. Eng. 40(3), 683 (2015)

    Article  Google Scholar 

  4. Chiang, J.Y., Chen, Y.C.: Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 21(4), 1756 (2012)

    Article  MathSciNet  Google Scholar 

  5. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A Math. Gen. 14(11), 453 (1981)

    Article  MathSciNet  Google Scholar 

  6. Chen, H., Varshney, L.R., Varshney, P.K.: Noise-enhanced information systems. Proc. IEEE 102(10), 1607 (2014)

    Article  Google Scholar 

  7. Harmer, G., Davis, B., Abbott, D.: A review of stochastic resonance: circuits and measurement. IEEE Trans. Instrum. Meas. 51(2), 299 (2002)

    Article  Google Scholar 

  8. Hnggi, P.: Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information processing. Chemphyschem A Eur. J. Chem. Phys. Phys. Chem. 3(3), 285 (2002)

    Article  Google Scholar 

  9. Mitaim, S., Kosko, B.: Adaptive stochastic resonance in noisy neurons based on mutual information. IEEE Trans. Neural Netw. 15(6), 1526 (2004)

    Article  Google Scholar 

  10. Dylov, D.V., Fleischer, J.W.: Nonlinear self-filtering of noisy images via dynamical stochastic resonance. Nat. Photonics 4(5), 323 (2010)

    Article  Google Scholar 

  11. Monifi, F., Zhang, J., Özdemir, Ş.K., Peng, B., Liu, Y., Bo, F., Nori, F., Yang, L.: Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photonics 10(6), 399 (2016)

    Article  Google Scholar 

  12. Jha, R.K., Chouhan, R.: Noise-induced contrast enhancement using stochastic resonance on singular values. Signal Image Video Process. 8(2), 339 (2014)

    Article  Google Scholar 

  13. Ryu, C., Kong, S.G., Kim, H.: Enhancement of feature extraction for low-quality fingerprint images using stochastic resonance. Pattern Recognit. Lett. 32(2), 107 (2011)

    Article  Google Scholar 

  14. Jha, R.K., Biswas, P.K., Shrivastava, S.: Logo extraction using dynamic stochastic resonance. Signal Image Video Process. 7(1), 119 (2013)

    Article  Google Scholar 

  15. Rallabandi, V.P., Roy, P.K.: Magnetic resonance image enhancement using stochastic resonance in Fourier domain. Magn. Reson. Imag. 28(9), 1361 (2010)

    Article  Google Scholar 

  16. Yang, J.H., Sanjun, M.A.F., Liu, H.G., Zhu, H.: Noise-induced resonance at the subharmonic frequency in bistable systems. Nonlinear Dyn. 87(3), 1721 (2017)

    Article  Google Scholar 

  17. Hu, B., Kurths, J., Zhou, C.: Array-enhanced coherence resonance. Nature 437(7059), 601 (2001)

    Google Scholar 

  18. Rajamani, S., Rajasekar, S., Sanjuán, M.A.F.: Ghost-vibrational resonance. Commun. Nonlinear Sci. Numer. Simul. 19(11), 4003 (2014)

    Article  MathSciNet  Google Scholar 

  19. Murali, K., Rajamohamed, I., Sinha, S., Ditto, W.L., Bulsara, A.R.: Realization of reliable and flexible logic gates using noisy nonlinear circuits. Appl. Phys. Lett. 95(19), 194102 (2009)

    Article  Google Scholar 

  20. Murali, K., Sinha, S., Ditto, W.L., Bulsara, A.R.: Reliable logic circuit elements that exploit nonlinearity in the presence of a noise floor. Phys. Rev. Lett. 102(10), 194102 (2009)

    Article  Google Scholar 

  21. Gupta, A., Sohane, A., Kohar, V., Murali, K., Sinha, S.: Noise-free logical stochastic resonance. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84(2), 055201 (2011)

    Article  Google Scholar 

  22. Yang, B., Zhang, X., Luo, M.: When noise-free logical stochastic resonance occurs in a bistable system. Nonlinear Dyn. 87(3), 1957 (2017)

    Article  Google Scholar 

  23. Sharma, A., Kohar, V., Shrimali, M.D., Sinha, S.: Realizing logic gates with time-delayed synthetic genetic networks. Nonlinear Dyn. 76(1), 431 (2013)

    Article  MathSciNet  Google Scholar 

  24. Wang, N., Song, A.: Enhanced logical stochastic resonance in synthetic genetic networks. IEEE Trans. Neural Netw. Learn. Syst. 27(12), 2736 (2016)

    Article  MathSciNet  Google Scholar 

  25. Zhang, H., Yang, T., Xu, W., Xu, Y.: Effects of non-Gaussian noise on logical stochastic resonance in a triple-well potential system. Nonlinear Dyn. 76(1), 649 (2014)

    Article  MathSciNet  Google Scholar 

  26. Kohar, V., Murali, K., Sinha, S.: Enhanced logical stochastic resonance under periodic forcing. Commun. Nonlinear Sci. Numer. Simul. 19(8), 2866 (2014)

    Article  MathSciNet  Google Scholar 

  27. Wang, G., Zheng, B., Sun, F.F.: Estimation-based approach for underwater image restoration. Opt. Lett. 36(13), 2384 (2011)

    Article  Google Scholar 

  28. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70(1), 223 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript

Additional information

This work was supported by National Natural Science Foundation of China (No. 61703381), Natural Science Foundation of Shandong Province (No. ZR2017BF006), China Postdoctoral Science Foundation (No. 2016M590658) and Fundamental Research Funds for the Central Universities (No. 201713017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Zheng, B., Zheng, H. et al. When underwater degraded images meet logical stochastic resonance. Nonlinear Dyn 94, 295–305 (2018). https://doi.org/10.1007/s11071-018-4359-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4359-y

Keywords

Navigation