Skip to main content
Log in

One-to-three resonant Hopf bifurcations of a maglev system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the dynamics of a maglev system around 1:3 resonant Hopf–Hopf bifurcations. When two pairs of purely imaginary roots exist for the corresponding characteristic equation, the maglev system has an interaction of Hopf–Hopf bifurcations at the intersection of two bifurcation curves in the feedback control parameter and time delay space. The method of multiple time scales is employed to drive the bifurcation equations for the maglev system by expressing complex amplitudes in a combined polar-Cartesian representation. The dynamics behavior in the vicinity of 1:3 resonant Hopf–Hopf bifurcations is studied in terms of the controller’s parameters (time delay and two feedback control gains). Finally, numerical simulations are presented to support the analytical results and demonstrate some interesting phenomena for the maglev system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roger, G.: Dynamic and control requirements for EMS maglev suspension. In: Maglev 2004 Proceedings, vol. 2, pp. 926–934 (2004)

  2. Zhang, Z., Long,Z., She, L., et al.: Linear quadratic state feedback optimal control against actuator failures. In: Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, pp. 3349–3354 (2007)

  3. Zou, D., She, L., Zhang, Z., et al.: Maglev vehicle and guideway coupled vibration analysis. Acta Electron. Sin. 38(9), 2071–2075 (2010)

    Google Scholar 

  4. She, L., Wang, H., Zou, D., et al.: Hopf bifurcation of maglev system with coupled elastic guideway. Maglev 2008, San Diego (2008)

  5. Zhang, L.L., Huang, L., Zhang, Z.: Stability and Hopf bifurcation of the maglev system with delayed position and speed feedback control. Nonlinear Dyn. 57, 197–207 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, H., Li, J., Zhang, K.: Non-resonant response, bifurcation and oscillation suppression of a non-autonomous system with delayed position feedback control. Nonlinear Dyn. 51, 447–464 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, L.L., Campbell, S.A., Huang, L.: Nonlinear analysis of a maglev system with time-delayed feedback control. Physics D 240(21), 1761–1770 (2011)

    Article  MATH  Google Scholar 

  8. Zhang, L.L., Zhang, Z., Huang, L.: Double Hopf bifurcation of time-delayed feedback control for maglev system. Nonlinear Dyn. 69, 961–967 (2012)

    Article  MathSciNet  Google Scholar 

  9. Bi, P., Ruan, S.: Bifurcation in delay differential equations and applications to tumor and immune system interaction models. SIAM J. Appl. Dyn. Syst. 4, 1847–1888 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding, Y., Jiang, W., Yu, P.: Double Hopf bifurcation in delayed van der Pol–Duffing equation. Int. J. Bifurc. Chaos 23, 1350014 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Angelo, L., Achille, P., Angelo, D.E.: Multiple timescales analysis for 1:2 and 1:3 resonant Hopf bifurcations. Nonlinear Dyn. 34, 269–291 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, W., Xu, J.: Multiple scales analysis for double Hopf bifurcation with 1:3 resonance. Nonlinear Dyn. 66, 39–51 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Alois, S.: Detecting the Shinikov scenario in a Hopf–Hopf bifurcation with 1:3 resonance. Procedia IUTAM 19, 83–90 (2016)

    Article  Google Scholar 

  14. Campbell, S.A., LeBlance, V.G.: Resonant Hopf–Hopf interactions in delay differential equations. J. Dyn. Differ. Equ. 10(2), 327–346 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ji, J.C., Brown, T.: Periodic and chaotic motion of a time-delayed nonlinear system under two coexisting families of additive resonance. Int. J. Bifurc. Chaos 27, 1750066 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhou, Y., Zhang, W.: Double Hopf bifurcation of composite laminated piezoelectric plate subjected to external and internal excitations. Appl. Math. Mech. 38(5), 689–706 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jiang, H., Song, Y.: Normal forms of non-resonance and weak resonance double Hopf bifurcation in the retarded functional differential equations and applications. Appl. Math. Comput. 266, 1102–1126 (2015)

    MathSciNet  Google Scholar 

  18. Ji, J.C.: Nonresonant Hopf bifurcations of a controlled van der Pol–Duffing oscillator. J. Sound Vib. 297, 183–199 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Angelo, L., Achille, P.: Perturbation methods for bifurcation analysis from multiple nonresonant complex eigenvalues. Nonlinear Dyn. 14, 193–210 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yuan, R., Jiang, W., Wang, Y.: Nonresonant double Hopf bifurcation in toxic phytoplankton–zooplankton model with delay. Int. J. Bifurc. Chaos 27(2), 1750028 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hassard, B., Kazarinoff, N., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  22. Nayfeh, A.H.: Perturbation Methods. Shanghai Publishing House of Science and Technology, Shanghai (1984)

    Google Scholar 

  23. Nayfeh, A.H.: Method of Normal Forms. WileyC Interscience, New York (1993)

    MATH  Google Scholar 

  24. Angelo, L., Egidio, A.D., Achille, P.: On the proper form of the amplitude modulation equations for resonant systems. Nonlinear Dyn. 27(3), 237–254 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of Hunan Province (2018JJ2192), the Scientific Research Key Project of Hunan Provincial Education Department (16A106) and the China Scholarship Council (CSC) in 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Zhang.

Ethics declarations

Conflict of interest

The authors declare that for this article, there is no conflict of interest in authorial ascription to organizations or financial and personal relationships with other people.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ji, J.C. One-to-three resonant Hopf bifurcations of a maglev system. Nonlinear Dyn 93, 1277–1286 (2018). https://doi.org/10.1007/s11071-018-4258-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4258-2

Keywords

Navigation