Skip to main content
Log in

Chaotic characteristics analysis of the sintering process system with unknown dynamic functions based on phase space reconstruction and chaotic invariables

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Because the sintering process system (SPS) of the rotary kiln is influenced by many uncertain factors, such as the composition of raw materials, the structure of the kiln crust, and the mode of operation, it displays complex nonlinear dynamic characteristics. In addition, its dynamic functions are unknown. Thus, data-based chaotic analysis methods are used to study the dynamic characteristics of the SPS. First, three sintering temperature (ST) data with different timescales are extracted, respectively, from the three SPSs. Second, the reasons why the dynamic characteristics of the SPS can be analyzed by the ST based on the phase space reconstruction (PSR) method are explained, and several potential PSR forms (reconstructed systems) are achieved. Third, the three optimal PSR forms of the three ST data (SPSs) are determined by chaotic invariables-based quantitative analysis. We determined that the three SPSs are all five-order chaotic systems. Finally, the optimal PSR forms are further verified by predicting the practical ST. The highly accurate predictions show that not only are the three optimal PSR forms applicable but also the chaotic methodologies are effective. Thus, the results in this paper not only provide extensive theoretical research values for subsequent studies of the SPS but also provide extensive industrial application value for other industries such as the nonferrous metallurgy, cement, steel, and chemical industries, in which the SPS is applied. Specifically, the PSR-based and chaotic invariables-based chaotic analysis methods can be used to analyze other industrial systems with unknown dynamic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kadlec, P., Gabrys, B., Strandt, S.: Data-driven soft sensors in the process industry. Comput. Chem. Eng. 33(4), 795–814 (2009)

    Article  Google Scholar 

  2. Souza, F.A.A., Araújo, R., Mendes, J.: Review of soft sensor methods for regression applications. Chemom. Intell. Lab. Syst. 152, 69–79 (2016)

    Article  Google Scholar 

  3. Li, W.T., Wang, D.H., Chai, T.Y.: Multisource data ensemble modeling for clinker free lime content estimate in rotary kiln sintering processes. IEEE Trans. Syst. Man Cybernet. Syst. 45(2), 303–314 (2015)

    Article  Google Scholar 

  4. Qiao, J.H., Chai, T.Y.: Soft measurement model and its application in raw meal calcination process. J. Process Control 22(1), 344–351 (2012)

    Article  Google Scholar 

  5. Lin, B., Jorgensen, S.B.: Soft sensor design by multivariate fusion of image features and process measurements. J. Process Control 21(4), 547–553 (2011)

    Article  Google Scholar 

  6. Li, W.T., Wang, D.H., Chai, T.Y.: Flame image-based burning state recognition for sintering process of rotary kiln using heterogeneous features and fuzzy integral. IEEE Trans. Ind. Inform. 8(4), 780–790 (2012)

    Article  Google Scholar 

  7. Li, W.T., Chen, K.Q., Wang, D.H.: Industrial image classification using a randomized neural-net ensemble and feedback mechanism. Neurocomputing 173(3), 708–714 (2016)

    Article  Google Scholar 

  8. Chen, H., Zhang, X.G., Hong, P.Y., Hu, H.P., Yin, X.: Recognition of the temperature condition of a rotary kiln using dynamic features of a series of blurry flame images. IEEE Tran. Ind. Inform. 12(1), 148–157 (2016)

    Google Scholar 

  9. Stadler, K.S., Poland, J., Gallestey, E.: Model predictive control of a rotary cement kiln. Control Eng. Pract. 19(1), 1–9 (2011)

    Article  Google Scholar 

  10. Sheng, G.G., Wang, X.: The non-linear vibrations of rotating functionally graded cylindrical shells. Nonlinear Dyn. 87(2), 1095–1109 (2017)

    Article  Google Scholar 

  11. Luo, K., Liu, C., Tian, Q., Hu, H.Y.: Nonlinear static and dynamic analysis of hyper-elastic thin shells via the absolute nodal coordinate formulation. Nonlinear Dyn. 85(2), 949–971 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, W.H., Sun, K.H., He, S.B.: SF-SIMM high-dimensional hyperchaotic map and its performance analysis. Nonlinear Dyn. 89(4), 2521–2532 (2017)

    Article  MathSciNet  Google Scholar 

  13. Takens, F.: Detecting Strange Attractors in Turbulence. Dynamical Systems and Turbulence, In: Rand, D., Young L.S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Berlin (1981)

  14. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45(9), 712–716 (1980)

    Article  Google Scholar 

  15. Yi, Z.M., Xiao, H., Song, J.L.: An alumina rotary kiln monitoring system based on infrared ray scanning. Measurement 46(7), 2051–2055 (2013)

    Article  Google Scholar 

  16. Guo, Z.Y., Dai, S.S., Liu, J.S., You, C.H., Cheng, Y.J., Yu, L.B.: Research on application of polynomial fitting technique in rotary kiln infrared temperature measurement system. Infrared Phys. Technol. 79, 160–164 (2016)

    Article  Google Scholar 

  17. Gao, C.H., Chen, J.M., Zeng, J.S., Liu, X.Y., Sun, Y.X.: A chaos-based iterated multistep predictor for blast furnace ironmaking process. Am. Inst. Chem. Eng. 55(4), 947–962 (2009)

    Article  Google Scholar 

  18. Tenreiro Machado, J.A., Lopes, A.M.: Approximation of data using non-integer harmonics series. Nonlinear Dyn. 89(4), 2845–2854 (2017)

    Article  MathSciNet  Google Scholar 

  19. Aydin, L., Karakose, M., Akin, E.: An approach for automated fault diagnosis based on a fuzzy decision tree and boundary analysis of a reconstructed phase space. ISA Trans. 53(2), 220–229 (2014)

    Article  Google Scholar 

  20. Wang, C.N., Ma, J., Liu, Y., Huang, L.: Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits. Nonlinear Dyn. 67(1), 139–146 (2012)

    Article  MATH  Google Scholar 

  21. Lau, L.: Wavelet packets based denoising method for measurement domain repeat-time multipath filtering in GPS static high-precision positioning. GPS Solut. 21(2), 461–474 (2017)

    Article  Google Scholar 

  22. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 3rd edn. Prentice Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  23. Albano, A.M., Muench, J., Schwartz, C.: Singular-value decomposition and the Grassberger–Procaccia algorithm. Phys. Rev. A 38(6), 3017–3026 (1988)

    Article  MathSciNet  Google Scholar 

  24. Rosenstein, M.T., Collins, J.J., De luca, C.J.: A practical method for computing Lyapunov exponents from small data sets. Phys. D Nonlinear Phenom. 65(1–2), 117–134 (1993)

    Article  MATH  Google Scholar 

  25. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134–1140 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Roulston, M.S.: Estimating the errors on measured entropy and mutual information. Phys. D 1253–4, 285–294 (1999)

    Article  MATH  Google Scholar 

  27. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403–3411 (1992)

    Article  Google Scholar 

  28. Grassberger, P., Procaccia, I.: Characterisation of strange attractors. Phys. Rev. Lett. 50(5), 346–349 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(3), 617–656 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bolotin, Y., Tur, A., Yanovsky, V.: Chaos: Concepts, Control and Constructive Use, vol. Sec. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  32. Brown, R., Bryant, P., Abarbanel, H.D.I.: Computing the Lyapunov spectrum of a dynamical system from an observed time series. Phys. Rev. A 43(6), 2787–2805 (1991)

    Article  MathSciNet  Google Scholar 

  33. Abarbanel, H.D., Brown, R., Kadtke, J.B.: Prediction in chaotic nonlinear systems: methods for time series with broadband Fourier spectra. Phys. Rev. A. 41(4), 1782–1807 (1990)

    Article  MathSciNet  Google Scholar 

  34. Xiao, D.F., An, J.Q., He, Y., Wu, M.: The chaotic characteristic of the carbon-monoxide utilization ratio in the blast furnace. ISA Trans. 68, 109–115 (2017)

    Article  Google Scholar 

  35. Faggini M.: Visual recurrence analysis: application to economic time series. In: Salzano, M., Colander, D. (eds.) Complexity Hints for Economic Policy. New Economic Windows, pp. 69–92 . Springer, Milano (2007)

  36. McKenzie, E.: General exponential smoothing and the equivalent ARMA process. J. Forecast. 3(3), 333–344 (1984)

    Article  Google Scholar 

  37. Nie, X.K., Coca, D.: Reconstruction of one-dimensional chaotic maps from sequences of probability density functions. Nonlinear Dyn. 80(3), 1373–1390 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y.: Testing the null hypothesis of stationarity against the alternative of a unit root. J. Econ. 54(1–3), 159–178 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Sciences Foundation of China under Grants 61672216 and 61673162. We thank three anonymous reviewers and the editor for valuable comments that improved this article. We also thank Ph.D Branko Pecar, Professor Charles L. Webber, and Professor Marisa Faggini for offering their profound insights about the PSR method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Lv, M., Chen, H. et al. Chaotic characteristics analysis of the sintering process system with unknown dynamic functions based on phase space reconstruction and chaotic invariables. Nonlinear Dyn 93, 395–412 (2018). https://doi.org/10.1007/s11071-018-4200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4200-7

Keywords

Navigation