Skip to main content
Log in

Lie symmetry analysis and invariant solutions of \(\varvec{(3+1)}\)-dimensional Calogero–Bogoyavlenskii–Schiff equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Lie group analysis is applied to carry out the similarity reductions of the \((3+1)\)-dimensional Calogero–Bogoyavlenskii–Schiff (CBS) equation. We obtain generators of infinitesimal transformations of the CBS equation and each of these generators depend on various parameters which give us a set of Lie algebras. For each of these Lie algebras, Lie symmetry method reduces the \((3+1)\)-dimensional CBS equation into a new \((2+1)\)-dimensional partial differential equation and to an ordinary differential equation. In addition, we obtain commutator table of Lie brackets and symmetry groups for the CBS equation. Finally, we obtain closed-form solutions of the CBS equation by using the invariance property of Lie group transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700–708 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  MATH  Google Scholar 

  3. Miura, M.R.: Bcklund Transformation. Springer, Berlin (1978)

    Google Scholar 

  4. Wang, M., Li, X., Zhang, J.: The \((\frac{G^{\prime }}{G})\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bluman, G.W., Cole, J.D.: Similarity Methods for Differential Equations. Springer, New York (1974)

    Book  MATH  Google Scholar 

  6. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  7. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  8. Sahoo, S., Garai, G., Saha Ray, S.: Lie symmetry analysis for similarity reduction and exact solutions of modified KdV–Zakharov–Kuznetsov equation. Nonlinear Dyn. 87, 1995–2000 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Johnpillai, A.G., Kara, A.H., Biswas, A.: Symmetry reduction, exact group-invariant solutions and conservation laws of the Benjamin–Bona–Mahoney equation. Appl. Math. Lett. 26, 376–381 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, G., et al.: Group analysis, exact solutions and conservation laws of a generalized fifth order KdV equation. Chaos Solitons Fractals 86, 8–15 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jafari, H., Kadkhoda, N., Baleanu, D.: Fractional Lie group method of the time-fractional Boussinesq equation. Nonlinear Dyn. 81, 1569–1574 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bogoyavlenski, O. I.: Math. USSR-Izv. 35, 245–248 (1990); translated from Izv. Akad. Nauk SSSR Ser. Mat. 53, 907–910 (1989)

  13. Bogoyavlenski, O. I.: Math. USSR-Izv. 36, 129–137 (1991); translated from Izv. Akad. Nauk SSSR Ser. Mat. 54, 123–131 (1990)

  14. Schiff, J.: Integrability of Chern-Simons-Higgs vortex equations and a reduction of the self-dual Yang-Mills equations to three dimensions, In: Painlevé transcendents (Sainte-Adèle, PQ, 1990), 393–405, NATO Adv. Sci. Inst. Ser. B Phys., 278, Plenum, New York

  15. Toda, K., Yu, S.J.: The investigation into the Schwarz–Korteweg–de Vries equation and the Schwarz derivative in \((2+1)\) dimensions. J. Math. Phys. 41, 4747–4751 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kobayashi, T., Toda, K.: The Painlevé test and reducibility to the canonical forms for higher-dimensional soliton equations with variable-coefficients. SIGMA Symmetry Integrability Geom. Methods Appl. 2, 063, 10 pp (2006)

  17. Bruzon, M. S., et al.: Theoret. Math. Phys. 137, 1378–1389 (2003); translated from Teoret. Mat. Fiz. 137, 27–39 (2003)

  18. Li, S., Li, Y., Zhang, B.: Some singular solutions and their limit forms for generalized Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. 85, 1665–1677 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, J., Yang, X.: Quasi-periodic wave solutions for the \((2+1)\)-dimensional generalized Calogero–Bogoyavlenskii–Schiff (CBS) equation. Nonlinear Anal. 75, 2256–2261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wazwaz, A.M.: Multiple-soliton solutions for the Calogero-Bogoyavlenskii–Schiff, Jimbo–Miwa and YTSF equations. Appl. Math. Comput. 203, 592–597 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Moatimid, G.M., et al.: Exact solutions for Calogero–Bogoyavlenskii–Schiff equation using symmetry method. Appl. Math. Comput. 220, 455–462 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Zhang, H.P., Chen, Y., Li, B.: Infinitely many symmetries and symmetry reduction of a \((2+1)\)-dimensional generalized Calogero–Bogoyavlenskii–Schiff equation. Acta Phys. Sinica 58, 7393–7396 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their extensive comments on the revision of the manuscript which really improved the quality of the paper. The first author expresses her gratitude to the University Grants Commission, New Delhi, India, for financial support to carry out the above work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishakha Jadaun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadaun, V., Kumar, S. Lie symmetry analysis and invariant solutions of \(\varvec{(3+1)}\)-dimensional Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn 93, 349–360 (2018). https://doi.org/10.1007/s11071-018-4196-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4196-z

Keywords

Navigation