Skip to main content
Log in

Complex dynamics in a generalized Langford system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper analyzes complex dynamics of the generalized Langford system (GLS) with five parameters. First, some important local dynamics such as the Hopf bifurcations and the stabilities of hyperbolic and zero/double-zero equilibrium are investigated using normal form theory, center manifold theory and bifurcation theory. Besides, an accurate expression of a periodic orbit and some approximate expressions of bifurcating limit cycles by Hopf bifurcation are obtained. Second, by using averaging theory, the zero-Hopf bifurcation at the origin is analyzed and also the stability of the bifurcating limit cycle is obtained. Of particular interest is that one numerically finds an annulus in three-dimensional space which appears nearby the bifurcating limit cycle under proper conditions. If an amplitude system of GLS has a center, its suspension may lead the GLS to exhibit such annulus. Third, it is proved rigorously that there exist two heteroclinic cycles and the coexistence of such two heteroclinic cycles and a periodic orbit under some conditions. This implies system has no chaos in the sense Shil’nikov heteroclinic criterion. Finally, by further numerical observation, it is shown that three different types of attractors exist simultaneously, such as two kinds of periodic orbits, periodic orbit and invariant torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, Cambridge (2012)

    MATH  Google Scholar 

  2. Shil’nikov L, P., Shil’nikov, A.L., Turaev, D.V., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics. World Scientific, Singapore (2001)

    Book  Google Scholar 

  3. Zhang, Z.F., Ding, T.R., Huang, W.Z., Dong, Z.X.: Qualitative Theory of Differential Equations, Thansl. Math. Monographs, American Mathematical Society (1992)

  4. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  5. Yang, Q.G., Chen, Y.M.: Complex dynamics in the unified Lorenz-type system. Int. J. Bifurcat. Chaos 24, 1450055 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yang, Q.G., Chen, G.R.: A chaotic system with one saddle and two stable node-foci. Int. J. Bifurcat. Chaos 18, 1393–1414 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yang, Q.G., Wei, Z.C., Chen, G.R.: An unusual 3D autonomous quadratic chaotic system with two stable node-foci. Int. J. Bifurcat. Chaos 20, 1061–1083 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buicǎ, A., García, I.A., Maza, S.: Multiple Hopf bifurcation in \(R^3\) and inverse Jacobi multipliers. J. Differ. Equ. 256, 310–325 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guckenheimer, J.: Singular Hopf bifurcation in systems with two slow variables. SIAM J. Appl. Dyn. Syst. 7, 1355–1377 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Leonov, G.A.: Attractors, limit cycles and homoclinic orbits of low-dimensional quadratic systems. Can. Appl. Math. Q. 17, 121–159 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Leonov, G.A.: Fishing principle for homoclinic and heteroclinic trajectories. Nonlinear Dyn. 78, 2751–2758 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cardin, P.T., Llibre, J.: Transcritical and zero-Hopf bifurcations in the Genesio system. Nonlinear Dyn. 88, 547–553 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Anastassiou, S., Pnevmatikos, S., Bountis, T.: Classification of dynamical systems based on a decomposition of their vector fields. J. Differ. Equ. 253, 2252–2262 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, C.Z., Ma, Z.E., Zhou, Y.C.: Periodic orbits in 3-dimensional systems and application to a perturbed Volterra system. J. Differ. Equ. 260, 2750–2762 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chua, L.O., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuits Syst. 33, 1072–1097 (1986)

    Article  MATH  Google Scholar 

  16. Mees, A.I., Chapman, P.B.: Homoclinic and heteroclinic orbits in the double scroll attractor. IEEE Trans. Circuits Syst. 34, 1115–1120 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ashraf, A., Abdulnasser, A.: On the design of chaos-based secure communication systems. Commun. Nonlinear Sci. 16, 3721–3737 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. CUP Archive, Cambridge (1981)

    MATH  Google Scholar 

  19. Hopf, E.: A mathematical example displaying features of turbulence. Commun. Pur. Appl. Math. 1, 303–322 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nikolov, S., Bozhkov, B.: Bifurcations and chaotic behavior on the Lanford system. Chaos Solitons Fractals 21, 803–808 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Krishchenko, A.P., Starkov, K.E.: Localization of compact invariant sets of nonlinear systems with applications to the Lanford system. Int. J. Bifurcat. Chaos 16, 3249–3256 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krishchenko, A.P., Starkov, K.E.: Iteration method of the localization of periodic orbits. In: Proceedings of the International Conference on Physics and Control, 2005 . IEEE, pp. 602–605 (2005)

  23. Belozyorov, V.Y.: Exponential-algebraic maps and chaos in 3D autonomous quadratic systems. Int. J. Bifurcat. Chaos 25, 1550048 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, G.H., Wang, X.N., Lin, X.L., Wei, M.H.: Steady-state and Hopf bifurcations in the Langford ODE and PDE systems. Nonlinear Anal. RWA 34, 343–362 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, S.H., Tang, J.S., Qin, J.Q., Yin, X.B.: Bifurcation analysis and control of periodic solutions changing into invariant tori in Langford system. Chin. Phys. B 17, 1691–1697 (2008)

    Article  Google Scholar 

  26. Cui, Y., Liu, S.H., Tang, J.S., Meng, Y.M.: Amplitude control of limit cycles in Langford system. Chaos Solitons Fractals 42, 335–340 (2009)

    Article  MATH  Google Scholar 

  27. Liu, Z.R.: The Qualitative Methods and Numerical Simulations of Differential Equations. South China University of Technology Press (2013)

  28. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, Berlin (2003)

    MATH  Google Scholar 

  29. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (2004)

    Book  MATH  Google Scholar 

  30. Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Appl. Math. Sci. 59, 21–43 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Euzébio, R.D., Llibre, J.: Zero-Hopf bifurcation in a Chua system. Nonlinear Anal. RWA 37, 31–40 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. García, I.A., Valls, C.: The three-dimensional center problem for the zero-Hopf singularity. Discrete Contin. Dyn. Syst. 36, 2027–2046 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11671149) and the Natural Science Foundation of Guangdong Province (No. 2017 A030312006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qigui Yang.

Appendix A

Appendix A

Table 1 The dynamics classification of equilibrium O of system (1.2)
Table 2 The dynamics classification of equilibrium G of system (1.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Yang, T. Complex dynamics in a generalized Langford system. Nonlinear Dyn 91, 2241–2270 (2018). https://doi.org/10.1007/s11071-017-4012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-4012-1

Keywords

Navigation