Skip to main content
Log in

Recent advances and comparisons between harmonic balance and Volterra-based nonlinear frequency response analysis methods

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Harmonic balance and Volterra-based analysis methods are well known, but the capabilities of these methods have been limited by significant issues of complexity which either constrain their application to relatively simple cases, or limit the accuracy of analysis in more complex cases. This study briefly summarizes recent results which effectively extend the capabilities of both harmonic balance and Volterra-based analysis by making complex analyses much more feasible. The new capabilities and performance of the two approaches are then evaluated and compared using benchmark case studies of a Duffing oscillator and a nonlinear automotive damper. The results offer new insights and lead to different conclusions on the relative merits of harmonic balance versus Volterra-based analysis relative to prior studies and similar benchmark analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brennan, M.J., Kovacic, I., Carrella, A., Waters, T.P.: On the jump-up and jump-down frequencies of the Duffing oscillator. J. Sound Vib. 318(4–5), 1250–1261 (2008)

    Article  Google Scholar 

  2. Mickens, R.E.: Mathematical and numerical study of the duffing harmonic oscillator. J. Sound Vib. 244(3), 563–567 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, Y., Liu, Z.: Numerical scheme for period-m motion of second-order nonlinear dynamical systems based on generalized harmonic balance method. Nonlinear Dyn. 84(1), 323–340 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dai, H., Yue, X., Yuan, J., Xie, D.: A fast harmonic balance technique for periodic oscillations of an aeroelastic airfoil. J. Fluids Struct. 50, 231–252 (2014)

    Article  Google Scholar 

  5. Besançon-Voda, A., Blaha, P.: Describing function approximation of a two-relay system configuration with application to Coulomb friction identification. Control Eng. Pract. 10(6), 655–668 (2002)

    Article  Google Scholar 

  6. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations, 1995th edn. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  7. Cook, P.A.: Nonlinear dynamical systems. In: Grimble, M.J. (ed.) Prentice Hall International Series in Systems and Control Engineering (1994)

  8. Chua, L.O., Ng, C.Y.: Frequency domain analysis of nonlinear systems: general theory. IEEE J. Electron. Circuits Syst. 3(4), 165–185 (1979)

    Article  Google Scholar 

  9. Schetzen, M.: Volterra and Wiener theories of nonlinear systems. Krieger Publishing Company, Revised edition (2006)

  10. Rugh, W.J.: Nonlinear System Theory: The Volterra/Wiener Approach. Johns Hopkins University Press, Baltimore, London (1981)

    MATH  Google Scholar 

  11. Bedrosian, E., Rice, S.O.: The output properties of Volterra systems (nonlinear systems with memory) driven by harmonic and Gaussian inputs. Proc. IEEE 59(12), 1688–1707 (1971)

    Article  MathSciNet  Google Scholar 

  12. Fliess, M., Lamnabhi, M., Lamnabhi-lagarrigue, F.: An algebraic approach to nonlinear functional expansions. IEEE Trans. Circuits Syst. 30(8), 554–570 (1983)

    Article  MATH  Google Scholar 

  13. Peyton Jones, J.C.: Simplified computation of the Volterra frequency response functions of non-linear systems. Mech. Syst. Signal Process. 21, 1452–1468 (2007)

    Article  Google Scholar 

  14. Adegeest, L.: Third-Order Volterra Modeling of Ship Responses Based on Regular Wave Results. Trondheim, Norway (1996)

    Google Scholar 

  15. Cafferty, S., Tomlinson, G.R.: Characterization of automotive dampers using higher order frequency response functions. In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, pp. 181–203 (1997)

  16. Marmarelis, V.Z.: Nonlinear Dynamic Modeling of Physiological Systems. Wiley, Hoboken (2004)

    Book  Google Scholar 

  17. Palumbo, P., Piroddi, L.: Harmonic analysis of non-linear structures by means of generalised frequency response functions coupled with NARX models. Mech. Syst. Signal Process. 14(2), 243–265 (2000)

    Article  Google Scholar 

  18. Shreesha, C., Gudi, R.D., Nataraj, P.S.V.: Frequency-domain-based, control-relevant model reduction for nonlinear plants. Ind. Eng. Chem. Res. 41(20), 5006–5015 (2002)

    Article  Google Scholar 

  19. Narayanan, S.: Transistor distortion analysis using volterra series representation. Bell Syst. Tech. J. 46(5), 991–1024 (1967)

    Article  Google Scholar 

  20. Ruotolo, R., Surace, C., Crespo, P., Storer, D.M.: Harmonic analysis of the vibrations of a cantilevered beam with a closing crack. Comput. Struct. 61(6), 1057–1074 (1996)

    Article  MATH  Google Scholar 

  21. Kaizer, A.J.M.: Modeling of the nonlinear response of an electrodynamic loudspeaker by a Volterra series expansion. J. Audio Eng. Soc. 35(6), 421–433 (1987)

    Google Scholar 

  22. Aparin, V., Persico, C.: Effect of out-of-band terminations on intermodulation distortion in common-emitter circuits. In: 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 99CH36282), vol. 3, pp. 2–5 (1999)

  23. Worden, K., Manson, G., Tomlinson, G.R.: A harmonic probing algorithm for the multi-input Volterra series. J. Sound Vib. 201(1), 67–84 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peng, Z.K., Lang, Z.Q., Billings, S.A., Tomlinson, G.R.: Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. J. Sound Vib. 311(1–2), 56–73 (2008)

    Article  Google Scholar 

  25. Peyton Jones, J.C., Choudhary, K.: Output frequency response characteristics of nonlinear systems. Part I: general multi-tone inputs. Int. J. Control 85(9), 1279–1292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peyton Jones, J.C., Choudhary, K.: Output frequency response characteristics of nonlinear systems. Part II: overlapping effects and commensurate multi-tone excitations. Int. J. Control 85(9), 1279–1292 (2012)

    Article  MATH  Google Scholar 

  27. Peyton Jones, J.C.: Automatic computation of polyharmonic balance equations for non-linear differential systems. Int. J. Control 76(4), 355–365 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Peyton Jones, J.C.: Practical frequency response analysis of non-linear time-delayed differential or difference equation models. Int. J. Control 78(1), 65–79 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Von Groll, G., Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241(2), 223–233 (2001)

    Article  Google Scholar 

  30. Blair, K.B., Krousgrill, C.M., Farris, T.N.: Harmonic balance and continuation techniques in the dynamics analysis of Duffing’s equation. J. Sound Vib. 202(5), 717–731 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Duym, S.W.R., Stiens, R., Reybrouck, K.G.: Evaluation of shock absorber models. Veh. Syst. Dyn. 27(2), 109–127 (1997)

    Article  Google Scholar 

  32. Surace, C., Worden, K., Tomlinson, G.R.: An improved nonlinear model for an automotive shock absorber. Nonlinear Dyn. 3(6), 413–429 (1992)

    Google Scholar 

  33. Allgower, E.L., Georg, K.: Numerical Path Following (1994)

  34. Cochelin, B., Vergez, C.: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vib. 324(1–2), 243–262 (2009)

  35. Blair, K.B., Krousgrill, C.M., Farris, T.N.: Harmonic balance and continuation techniques in the dynamics analysis of Duffing’s equation. J. Sound Vib. 202(5), 717–731 (1997)

  36. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete Time Signal Processing, vol. 2. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  37. Kacar, S., Çankaya, I., Boz, A.: Investigation of computational load and parallel computing of Volterra series method for frequency analysis of nonlinear systems. Optoelectron. Adv. Mater. 8(5–6), 555–566 (2014)

  38. Tomlinson, G.R., Manson, G., Lee, G.M.: A simple criterion for establishing an upper limit to the harmonic excitation level of the Duffing oscillator using the Volterra series. J. Sound Vib. 190(5), 751–762 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Peyton Jones.

Appendix

Appendix

Expressions for \(H_{5}(\cdot ),{\ldots },H_{7}(\cdot )\) for nonlinear damping case:

$$\begin{aligned}&H_5 \left( {j\omega _1 ,\ldots ,j\omega _5 } \right) = - H_1 \left( {j(\omega _1 +\omega _2 +\omega _3 +\omega _4 +\omega _5 )} \right) \\&\quad \times \left( {\begin{array}{l} d_2 \left( {\begin{array}{l} 2\left( {j\omega _1 +j\omega _2 } \right) \left( {j\omega _3 +j\omega _4 +j\omega _5 } \right) H_2 \left( {j\omega _1 +j\omega _2 } \right) H_3 \left( {j\omega _3 ,j\omega _4 ,j\omega _5 } \right) \\ +2j\omega _1 \left( {j\omega _2 +j\omega _3 +j\omega _4 +j\omega _5 } \right) H_1 \left( {j\omega _1 } \right) H_4 \left( {j\omega _2 ,j\omega _3 ,j\omega _4 ,j\omega _5 } \right) \\ \end{array}} \right) \\ +\,d_3 \left( {\begin{array}{l} 3j\omega _1 \left( {j\omega _2 +j\omega _3 } \right) \left( {j\omega _4 +j\omega _5 } \right) H_1 \left( {j\omega _1 } \right) H_2 \left( {j\omega _2 ,j\omega _3 } \right) H_2 \left( {j\omega _4 ,j\omega _5 } \right) \\ +3j\omega _1 j\omega _2 \left( {j\omega _3 +j\omega _4 +j\omega _5 } \right) H_1 \left( {j\omega _1 } \right) H_1 \left( {j\omega _2 } \right) H_3 \left( {j\omega _3 ,j\omega _4 ,j\omega _5 } \right) \\ \end{array}} \right) \\ \end{array}} \right) \\&H_6 \left( {j\omega _1 ,\ldots ,j\omega _6 } \right) = - H_1 \left( {j(\omega _1 +\omega _2 +\omega _3 +\omega _4 +\omega _5 +\omega _6 )} \right) \\&\quad \times \left( {\begin{array}{l} d_2 \left( {\begin{array}{l} 2j\omega _1 \left( {j\omega _2 +j\omega _3 +j\omega _4 +j\omega _5 +j\omega _6 } \right) H_1 \left( {j\omega _1 } \right) H_5 \left( {j\omega _2 ,j\omega _3 ,j\omega _4 ,j\omega _5 ,j\omega _6 } \right) \\ +2\left( {j\omega _1 +j\omega _2 } \right) \left( {j\omega _3 +j\omega _4 +j\omega _5 +j\omega _6 } \right) H_2 \left( {j\omega _1 ,j\omega _2 } \right) H_4 \left( {j\omega _3 ,j\omega _4 ,j\omega _5 ,j\omega _6 } \right) \\ \left( {j\omega _1 +j\omega _2 +j\omega _3 } \right) \left( {j\omega _4 +j\omega _5 +j\omega _6 } \right) H_3 \left( {j\omega _1 ,j\omega _2 ,j\omega _3 } \right) H_3 \left( {j\omega _4 ,j\omega _5 ,j\omega _6 } \right) \\ \end{array}} \right) \\ +\,d_3 \left( {\begin{array}{l} 3j\omega _1 j\omega _2 \left( {j\omega _3 +j\omega _4 +j\omega _5 +j\omega _6 } \right) H_1 \left( {j\omega _1 } \right) H_1 \left( {j\omega _2 } \right) H_4 \left( {j\omega _3 ,j\omega _4 ,j\omega _5 ,j\omega _6 } \right) \\ +\left( {j\omega _1 +j\omega _2 } \right) \left( {j\omega _3 +j\omega _4 } \right) \left( {j\omega _5 +j\omega _6 } \right) H_2 \left( {j\omega _1 ,j\omega _2 } \right) H_2 \left( {j\omega _3 ,j\omega _4 } \right) H_2 \left( {j\omega _5 ,j\omega _6 } \right) \\ +3j\omega _1 \left( {j\omega _2 +j\omega _3 } \right) \left( {j\omega _4 +j\omega _5 +j\omega _6 } \right) H_1 \left( {j\omega _1 } \right) H_2 \left( {j\omega _2 ,j\omega _3 } \right) H_3 \left( {j\omega _4 ,j\omega _5 ,j\omega _6 } \right) \\ \end{array}} \right) \\ \end{array}} \right) \\&H_7 \left( {j\omega _1 ,\ldots ,j\omega _7 } \right) =-H_1 \left( {j(\omega _1 +\cdots +\omega _7 )} \right) \\&\quad \times \left( {\begin{array}{l} d_2 \left( {\begin{array}{l} 2j\omega _1 \left( {j\omega _2 +j\omega _3 +j\omega _4 +j\omega _5 +j\omega _6 +j\omega _7 } \right) H_1 \left( {j\omega _1 } \right) H_6 \left( {j\omega _2 ,j\omega _3 ,j\omega _4 ,j\omega _5 ,j\omega _6 ,j\omega _7 } \right) \\ +2\left( {j\omega _1 +j\omega _2 } \right) \left( {j\omega _3 +j\omega _4 +j\omega _5 +j\omega _6 +j\omega _7 } \right) H_2 \left( {j\omega _1 ,j\omega _2 } \right) H_5 \left( {j\omega _3 ,j\omega _4 ,j\omega _5 ,j\omega _6 ,j\omega _7 } \right) \\ +2\left( {j\omega _1 +j\omega _2 +j\omega _3 } \right) \left( {j\omega _4 +j\omega _5 +j\omega _6 +j\omega _7 } \right) H_3 \left( {j\omega _1 ,j\omega _2 ,j\omega _3 } \right) H_4 \left( {j\omega _4 ,j\omega _5 ,j\omega _6 ,j\omega _7 } \right) \\ \end{array}} \right) \\ +\,d_3 \left( {\begin{array}{l} 6j\omega _1 \left( {j\omega _2 +j\omega _3 } \right) \left( {j\omega _4 +j\omega _5 +j\omega _6 +j\omega _7 } \right) H_1 \left( {j\omega _1 } \right) H_2 \left( {j\omega _2 ,j\omega _3 } \right) H_4 \left( {j\omega _4 ,j\omega _5 ,j\omega _6 ,j\omega _7 } \right) \\ +3\left( {j\omega _1 +j\omega _2 } \right) \left( {j\omega _3 +j\omega _4 } \right) \left( {j\omega _5 +j\omega _6 +j\omega _7 } \right) H_2 \left( {j\omega _1 ,j\omega _2 } \right) H_2 \left( {j\omega _3 ,j\omega _4 } \right) H_3 \left( {j\omega _5 ,j\omega _6 ,j\omega _7 } \right) \\ +3j\omega _1 \left( {j\omega _2 +j\omega _3 +j\omega _4 } \right) \left( {j\omega _5 +j\omega _6 +j\omega _7 } \right) H_1 \left( {j\omega _1 } \right) H_3 \left( {j\omega _2 ,j\omega _3 ,j\omega _4 } \right) H_3 \left( {j\omega _5 ,j\omega _6 ,j\omega _7 } \right) \\ \end{array}} \right) \\ \end{array}} \right) \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyton Jones, J.C., Yaser, K.S.A. Recent advances and comparisons between harmonic balance and Volterra-based nonlinear frequency response analysis methods. Nonlinear Dyn 91, 131–145 (2018). https://doi.org/10.1007/s11071-017-3860-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3860-z

Keywords

Navigation