Skip to main content
Log in

Fractional-order PD control at Hopf bifurcations in a fractional-order congestion control system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we address the problem of the bifurcation control of a delayed fractional-order dual model of congestion control algorithms. A fractional-order proportional–derivative (PD) feedback controller is designed to control the bifurcation generated by the delayed fractional-order congestion control model. By choosing the communication delay as the bifurcation parameter, the issues of the stability and bifurcations for the controlled fractional-order model are studied. Applying the stability theorem of fractional-order systems, we obtain some conditions for the stability of the equilibrium and the Hopf bifurcation. Additionally, the critical value of time delay is figured out, where a Hopf bifurcation occurs and a family of oscillations bifurcate from the equilibrium. It is also shown that the onset of the bifurcation can be postponed or advanced by selecting proper control parameters in the fractional-order PD controller. Finally, numerical simulations are given to validate the main results and the effectiveness of the control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Anastasio, T.J.: The fractional-order dynamics of brain-stem vestibule-oculomotor neurons. Biol. Cybern. 72(1), 69–79 (1994)

    Article  Google Scholar 

  2. Sarwar, S., Zahid, M.A., Iqbal, S.: Mathematical study of fractional-order biological population model using optimal homotopy asymptotic method. Int. J. Biomath. 9(6), 1650081 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Huang, C.D., Cao, J.D., Xiao, M.: Hybrid control on bifurcation for a delayed fractional gene regulatory network. Chaos Solitons Fractals 87, 19–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, Q., Qi, D.L.: Synchronization for fractional order chaotic systems with uncertain parameters. Int. J. Control Autom. Syst. 14(1), 211–216 (2016)

    Article  Google Scholar 

  5. Lenka, B.K., Banerjee, S.: Asymptotic stability and stabilization of a class of nonautonomous fractional order systems. Nonlinear Dyn. 85(1), 167–177 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Du, M.L., Wang, Z.H., Hu, H.Y.: Measuring memory with the order of fractional derivative. Sci. Rep. 3, 3431 (2013)

    Article  Google Scholar 

  7. Feliu-Batlle, V., Rivas-Perez, R., Castillo-Garcia, F.J.: Simple fractional order controller combined with a smith predictor for temperature control in a steel slab reheating furnace. Int. J. Control Autom. Syst. 11(3), 533–544 (2013)

    Article  Google Scholar 

  8. Tsirimokou, G., Psychalinos, C.: Ultra-low voltage fractional-order circuits using current mirrors. Int. J. Circuit Theory Appl. 44(1), 109–126 (2016)

    Article  Google Scholar 

  9. Kelly, F.P., Maulloo, A.K., Tan, D.K.H.: Rate control for communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998)

    Article  MATH  Google Scholar 

  10. Zhang, X., Papachristodoulou, A.: Improving the performance of network congestion control algorithms. IEEE Trans. Autom. Control 60(2), 522–527 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Azadegan, M., Beheshti, M.T.H., Tavassoli, B.: Using AQM for performance improvement of networked control systems. Int. J. Control Autom. Syst. 13(3), 764–772 (2015)

    Article  MATH  Google Scholar 

  12. Johari, R., Tan, D.K.H.: End-to-end congestion control for the internet: delays and stability. IEEE/ACM Trans. Netw. 9(6), 818–832 (2001)

    Article  Google Scholar 

  13. Ranjan, P., La, R.J., Abed, E.H.: Global stability conditions for rate control with arbitrary communication delays. IEEE/ACM Trans. Netw. 14(1), 94–107 (2006)

    Article  Google Scholar 

  14. Sichitiu, M.L., Bauer, P.H.: Asymptotic stability of congestion control systems with multiple sources. IEEE Trans. Autom. Control 51(2), 292–298 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, Z.T., Yang, Q.G., Cao, J.F.: The stochastic stability and bifurcation behavior of an Internet congestion control model. Math. Comput. Model. 54(9–10), 1954–1965 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, C.G., Chen, G.R., Liao, X.F., Yu, J.B.: Hopf bifurcation in an Internet congestion control model. Chaos Solitons Fractals 19(4), 853–862 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Raina, G.: Local bifurcation analysis of some dual congestion control algorithms. IEEE Trans. Autom. Control 50(8), 1135–1146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ding, D.W., Zhu, J., Luo, X.S., Liu, Y.L.: Delay induced Hopf bifurcation in a dual model of Internet congestion control algorithm. Nonlinear Anal. Real World Appl. 10(5), 2873–2883 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, S.T., Zheng, H.Y., Liu, Q.: Hopf bifurcation analysis for congestion control with heterogeneous delays. Nonlinear Anal. Real World Appl. 11(4), 3077–3090 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rezaie, B., Motlagh, M.R.J., Khorsandi, S., Analoui, M.: Hopf bifurcation analysis on an internet congestion control system of arbitrary dimension with communication delay. Nonlinear Anal. Real World Appl. 11(5), 3842–3857 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ding, D.W., Zhu, J., Luo, X.S.: Hybrid control of bifurcation and chaos in stroboscopic model of Internet congestion control system. Chin. Phys. B 17(1), 105–110 (2008)

    Article  Google Scholar 

  22. Wang, J.S., Yuan, R.X., Gao, Z.W., Wang, D.J.: Hopf bifurcation and uncontrolled stochastic traffic-induced chaos in an RED-AQM congestion control system. Chin. Phys. B 20(9), 090506 (2011)

    Article  Google Scholar 

  23. Chen, L., Wang, X.F., Han, Z.Z.: Controlling chaos in internet congestion control model. Chaos Solitons Fractals 21(1), 81–91 (2004)

    Article  MATH  Google Scholar 

  24. Xiao, M., Zheng, W.X., Cao, J.D.: Bifurcation control of a congestion control model via state feedback. Int. J. Bifurc. Chaos 23(6), 1330018 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xiao, M., Cao, J.D.: Delayed feedback-based bifurcation control in an Internet congestion model. J. Math. Anal. Appl. 332(2), 1010–1027 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guo, S.T., Feng, G., Liao, X.F., Liu, Q.: Hopf bifurcation control in a congestion control model via dynamic delayed feedback. Chaos 18(4), 043104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, F., Wang, H.O., Guan, Z.H.: Hopf bifurcation control in the XCP for the Internet congestion control system. Nonlinear Anal. Real World Appl. 13(3), 1466–1479 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiao, M., Jiang, G.P., Zhao, L.D.: State feedback control at Hopf bifurcation in an exponential RED algorithm model. Nonlinear Dyn. 76(2), 1469–1484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, W.Y., Hayat, T., Cao, J.D., Xiao, M.: Hopf bifurcation control for a fluid flow model of internet congestion control systems via state feedback. IMA J. Math. Control Inf. 33, 69–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ding, D.W., Qin, X.M., Wang, N., Wu, T.T., Liang, D.: Hybrid control of Hopf bifurcation in a dual model of Internet congestion control system. Nonlinear Dyn. 76(2), 1041–1050 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ding, D.W., Qin, X.M., Wang, N., Wu, T.T., Liang, D.: Hopf bifurcation control of congestion control model in a wireless access network. Neurocomputing 144, 159–168 (2014)

    Article  Google Scholar 

  32. Tavazoei, M.S., Haeri, M.: A proof for non existence of periodic solutions in time invariant fractional order systems. Automatica 45(8), 1886–1890 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tavazoei, M.S.: A note on fractional-order derivatives of periodic functions. Automatica 46(5), 945–948 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  35. Xiao, M., Jiang, G.P., Cao, J.D., Zheng, W.X.: Local bifurcation analysis of a delayed fractional-order dynamic model of dual congestion control algorithms. IEEE/CAA J. Autom. Sin. 4(2), 357–365 (2017)

  36. Kelly, R.: Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions. IEEE Trans. Autom. Control 43(7), 934–938 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dupont, P.E.: Avoiding stick-slip through Pd Control. IEEE Trans. Autom. Control 39(5), 1094–1097 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Angeli, D.: Input-to-state stability of PD-controlled robotic systems. Automatica 35(7), 1285–1290 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bucklaew, T., Liu, C.S.: Hopf bifurcation in PD controlled pendulum or manipulator. J. Dyn. Syst. T Asme. 124(2), 327–332 (2002)

    Article  Google Scholar 

  40. Ding, D.W., Zhang, X.Y., Cao, J.D., Wang, N.A., Liang, D.: Bifurcation control of complex networks model via PD controller. Neurocomputing 175, 1–9 (2016)

    Article  Google Scholar 

  41. Bucklaew, T.P., Liu, C.S.: Pitchfork-type bifurcations in a parametrically excited, PD-controlled pendulum or manipulator. J. Sound Vib. 247(4), 655–672 (2001)

    Article  Google Scholar 

  42. Hamamci, S.E.: An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers. IEEE Trans. Autom. Control 52(10), 1964–1969 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vinagre, B.M., Monje, C.A., Calderon, A.J., Suarez, J.I.: Fractional PID controllers for industry application. A brief introduction. J. Vib. Control 13(9–10), 1419–1429 (2007)

    Article  MATH  Google Scholar 

  44. Biswas, A., Das, S., Abraham, A., Dasgupta, S.: Design of fractional-order \(PI^{\lambda }D^{\mu }\) controllers with an improved differential evolution. Eng. Appl. Artif. Intell. 22(2), 343–350 (2009)

    Article  Google Scholar 

  45. Zamani, M., Karimi-Ghartemani, M., Sadati, N., Parniani, M.: Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng. Pract. 17(12), 1380–1387 (2009)

    Article  Google Scholar 

  46. Pan, I., Das, S.: Chaotic multi-objective optimization based design of fractional order \(PI^{\lambda }D^{\mu }\) controller in AVR system. Int. J. Electr. Power 43(1), 393–407 (2012)

    Article  Google Scholar 

  47. Chen, L.C., Zhao, T.L., Li, W., Zhao, J.: Bifurcation control of bounded noise excited Duffing oscillator by a weakly fractional-order feedback controller. Nonlinear Dyn. 83(1–2), 529–539 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Huang, C.D., Cao, J.D., Xiao, M., Alsaedi, A., Alsaadi, F.E.: Controlling bifurcation in a delayed fractional predator-prey system with incommensurate orders. Appl. Math. Comput. 293, 293–310 (2017)

    MathSciNet  Google Scholar 

  49. Xiao, M., Jiang, G.P., Zheng, W.X., Yan, S.L., Wan, Y.H., Fan, C.X.: Bifurcation control of a fractional-order Van Der Pol oscillator based on the state feedback. Asian J. Control 17(5), 1756–1766 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Deng, W.H., Li, C.P., Lü, J.H.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48(4), 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Nakagawa, M., Sorimachi, K.: Basic characteristics of a fractance device. IECIE Trans. Fundam. Electron. E75A, 1814–1819 (1992)

    Google Scholar 

  52. Xiao, M., Zheng, W.X., Jiang, G.P., Cao, J.D.: Stability and bifurcation of delayed fractional-order dual congestion control algorithms. IEEE Trans. Autom. Control, in press (2017). doi:10.1109/TAC.2017.2688583

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61573194, 61374180, 61473158 and 61573096), the Six Talent Peaks High Level Project of Jiangsu Province of China (Grant No. 2014-ZNDW-004), and the 1311 Talents Project through the Nanjing University of Posts and Telecommunications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Xiao, M., Jiang, G. et al. Fractional-order PD control at Hopf bifurcations in a fractional-order congestion control system. Nonlinear Dyn 90, 2185–2198 (2017). https://doi.org/10.1007/s11071-017-3794-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3794-5

Keywords

Navigation