Skip to main content
Log in

Low-complexity differentiator-based decentralized fault-tolerant control of uncertain large-scale nonlinear systems with unknown dead zone

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates a low-complexity robust decentralized fault-tolerant prescribed performance control scheme for uncertain larger-scale nonlinear systems with consideration of the unknown nonlinearity, actuator failures, dead-zone input, and external disturbance. Firstly, a new simple finite-time-convergent differentiator is developed to obtain the unmeasurable state variables with arbitrary accuracy. Then, a time-varying sliding manifold involving the output tracking error and its high-order derivatives is constructed to tackle the high-order dynamics of subsystems. Sequentially, a robust decentralized fault-tolerant control scheme is proposed for each sliding manifold with prescribed convergence rate. The prominent advantage of the proposed fault-tolerant control scheme is that any specialized approximation technique, disturbance observer, and recursive procedure of backstepping technique are avoided, which dramatically alleviates the complexity of controller design. Finally, two groups of illustrative examples are employed to demonstrate the effectiveness of the low-complexity decentralized fault-tolerant control scheme under the developed finite-time-convergent differentiator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Jain, S., Khorrami, F.: Decentralized adaptive control of a class of large-scale interconnected nonlinear systems. IEEE Trans. Autom. Control 42(2), 136–154 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Huang, S.N., Tan, K.K., Lee, T.H.: Nonlinear adaptive control of interconnected systems using neural networks. IEEE Trans. Neural Netw. 17(1), 243–246 (2006)

    Article  Google Scholar 

  3. Bakule, L.: Decentralized control: an overview. Annu. Rev. Control 32(1), 87–98 (2008)

    Article  MathSciNet  Google Scholar 

  4. Tong, S.C., Liu, C.L., Li, Y.M.: Fuzzy-adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties. IEEE Trans. Fuzzy Syst. 18(5), 845–861 (2010)

    Article  Google Scholar 

  5. Li, Z., Deng, S., Su, C.Y., Li, G.: Decentralized adaptive control of cooperating mobile manipulators with disturbance observers. IET Control Theory Appl. 8(7), 515–521 (2014)

    Article  MathSciNet  Google Scholar 

  6. Wang, M.M., Luo, J.J., Walter, U.: Novel synthesis method for minimizing attitude disturbance of the free-floating space robots. J. Guid. Control Dyn. 39(3), 1–10 (2015)

    Google Scholar 

  7. Koo, G.B., Park, J.B., Joo, Y.H.: Decentralized control for large-scale sampled-data systems: digital redesign approach. Int. J. Control 88(11), 2181–2193 (2015)

    Article  MATH  Google Scholar 

  8. Liu, Y.J., Tong, S.C., Li, T.S.: Observer-based adaptive fuzzy tracking control for a class of uncertain nonlinear MIMO systems. Fuzzy Sets Syst. 164(1), 25–44 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, M., Ge, S.S.: Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer. IEEE Trans. Cybern. 43(4), 1213–1225 (2013)

    Article  Google Scholar 

  10. Karimi, B., Menhaj, M.B.: Non-affine nonlinear adaptive control of decentralized large-scale systems using neural networks. Inf. Sci. 180(17), 3335–3347 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tong, S.C., Li, Y.M., Zhang, H.G.: Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays. IEEE Trans. Neural Netw. 22(7), 1073–1086 (2011)

    Article  Google Scholar 

  12. Zhou, Q., Shi, P., Liu, H., Xu, S.: Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(6), 1608–1619 (2012)

    Article  Google Scholar 

  13. Chen, M., Tao, G.: Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone. IEEE Trans. Cybern. 46(8), 1851–1862 (2016)

    Article  Google Scholar 

  14. Yousef, H., El-Madbouly, E., Eteim, D., Hamdy, M.: Adaptive fuzzy semi-decentralized control for a class of large-scale nonlinear systems with unknown interconnections. Int. J. Robust Nonlinear Control 16(15), 687–708 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, H., Liu, X., Chen, B., Zhou, Q.: Adaptive fuzzy decentralized control for a class of pure-feedback large-scale nonlinear systems. Nonlinear Dyn. 75(3), 449–460 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Y.M., Tong, S.C., Li, T.S.: Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems. IEEE Trans. Cybern. 45(1), 138–149 (2015)

    Article  Google Scholar 

  17. Wang, H., Liu, X., Liu, K.: Robust adaptive neural tracking control for a class of stochastic nonlinear interconnected systems. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 510–523 (2016)

    Article  MathSciNet  Google Scholar 

  18. Wu, L.B., Yang, G.H.: Decentralized adaptive fuzzy fault-tolerant tracking control of large-scale nonlinear systems with actuator failures. Neurocomputing 179, 307–317 (2016)

    Article  Google Scholar 

  19. Li, J., Park, J.H.: Fault detection filter design for switched systems with quantization effects. J. Franklin I. 353(11), 2431–2450 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tian, M., Tao, G.: Adaptive dead-zone compensation for output-feedback canonical systems. Int. J. Control 67(5), 791–812 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Y.X., Yang, G.H.: Adaptive asymptotic tracking control of uncertain nonlinear systems with input quantization and actuator faults. Automatica 72, 177–185 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Park, J.H., Mathiyalagan, K., Sakthivel, R.: Fault estimation for discrete-time switched nonlinear systems with discrete and distributed delays. Int. J. Robust Nonlinear Control 26(17), 3755–3771 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Alwi, H., Edwards, C.: Fault tolerant control using sliding modes with on-line control allocation. Automatica 44(7), 1859–1866 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hao, L.Y., Park, J.H., Ye, D.: Fuzzy logic systems-based integral sliding mode fault-tolerant control for a class of uncertain non-linear systems. IET Control Theory Appl. 10(3), 300–311 (2016)

    Article  MathSciNet  Google Scholar 

  25. Hao, L.Y., Park, J.H., Ye, D.: Integral sliding mode fault-tolerant control for uncertain linear systems over networks with signals quantization. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS.2016.2574905

    Google Scholar 

  26. Tong, S.C., Huo, B.Y., Li, Y.M.: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Trans. Fuzzy Syst. 22(1), 1–15 (2014)

    Article  Google Scholar 

  27. Zhou, J.: Decentralized adaptive control for large-scale time-delay systems with dead-zone input. Automatica 44(7), 1790–1799 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma, H.J., Yang, G.H.: Adaptive output control of uncertain nonlinear systems with non-symmetric dead-zone input. Automatica 46(2), 413–420 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tong, S.C., Li, Y.M.: Adaptive fuzzy decentralized output feedback control for nonlinear large-scale systems with unknown dead-zone inputs. IEEE Trans. Fuzzy Syst. 21(5), 913–925 (2013)

    Article  Google Scholar 

  30. Yoo, S.J.: Decentralised fault compensation of time-delayed interactions and dead-zone actuators for a class of large-scale non-linear systems. IET Control Theory Appl. 9(9), 1461–1471 (2015)

    Article  MathSciNet  Google Scholar 

  31. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  32. Guo, B.Z., Zhao, Z.L.: On the convergence of an extended state observer for nonlinear systems with uncertainty. Syst. Control Lett. 60(6), 420–430 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, B., Hu, Q., Ma, G.: Extended state observer based robust attitude control of spacecraft with input saturation. Aerosp. Sci. Technol. 50, 173–182 (2016)

    Article  Google Scholar 

  34. Wang, X.H., Chen, Z.Q., Yang, G.: Finite-time-convergent differentiator based on singular perturbation technique. IEEE Trans. Autom. Control 52(9), 1731–1737 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bu, X.W., Wu, X.Y., Tian, M.Y., Huang, J.Q., Zhang, R., Ma, Z.: High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints. ISA Trans. 58, 237–247 (2015)

    Article  Google Scholar 

  36. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bu, X.W., Wu, X.Y., Zhang, R., Ma, Z., Huang, J.Q.: Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle. J. Franklin I. 352(4), 1739–1765 (2015)

    Article  MathSciNet  Google Scholar 

  38. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable mimo nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, Y.M., Tong, S.C.: Prescribed performance adaptive fuzzy output-feedback dynamic surface control for nonlinear large-scale systems with time delays. Inf. Sci. 292, 125–142 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Han, S.I., Lee, J.M.: Prescribed performance fuzzy backstepping control for nonlinear large-scale systems. Int. J. Control Autom. Syst. 13(6), 1508–1520 (2015)

    Article  Google Scholar 

  41. Bechlioulis, C.P., Doulgeri, Z., Rovithakis, G.A.: Neuro-adaptive force/position control with prescribed performance and guaranteed contact maintenance. IEEE Trans. Neural Netw. 21(12), 1857–1868 (2010)

    Article  Google Scholar 

  42. Sun, D., Naghdy, F., Du, H.P.: Time domain passivity control of time-delayed bilateral telerobotics with prescribed performance. Nonlinear Dyn. 87(2), 1253–1270 (2017)

    Article  Google Scholar 

  43. Bu, X.W., Wu, X.Y., Huang, J.Q., Wei, D.Z.: A guaranteed transient performance-based adaptive neural control scheme with low-complexity computation for flexible air-breathing hypersonic vehicles. Nonlinear Dyn. 84(4), 2175–2194 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Bechlioulis, C.P., Rovithakis, G.A.: A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Automatica 50(4), 1217–1226 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Bu, X.W., Wu, X.Y., Huang, J.Q., Wei, D.Z.: Robust estimation-free prescribed performance back-stepping control of air-breathing hypersonic vehicles without affine models. Int. J. Control 89(11), 2185–2200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Bechlioulis, C.P., Rovithakis, G.A.: Decentralized robust synchronization of unknown high order nonlinear multi-agent systems with prescribed transient and steady state performance. IEEE Trans. Autom. Control 62(1), 123–134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Choi, Y.H., Yoo, S.J.: Decentralized approximation-free control for uncertain large-scale pure-feedback systems with unknown time-delayed nonlinearities and control directions. Nonlinear Dyn. 85(2), 1053–1066 (2016)

  48. Park, J.H., Kim, S.H., Moon, C.J.: Adaptive neural control for strict-feedback nonlinear systems without backstepping. IEEE Trans. Neural Netw. 20(7), 1204–1209 (2009)

    Article  Google Scholar 

  49. Haimo, V.T.: Finite time controllers. SIAM J. Control Optim. 24(4), 760–770 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  50. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

  51. Bartle, R.: The Elements of Real Analysis. Wiley, Hoboken (1964)

    MATH  Google Scholar 

  52. Hušek P.: Adaptive sliding mode control with moving sliding surface. Appl. Soft Comput. 42, 178–183 (2016)

  53. Sontag, E.D.: Mathematical Control Theory. Springer, London (1998)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part of the Major Program of National Natural Science Foundation of China (Grant Nos. 61690210, 61690211), the National Natural Science Foundation of China (Grant Nos. 11502203, 61603304), and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (Grant No. CX201602).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Luo or Honghua Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Luo, J., Dai, H. et al. Low-complexity differentiator-based decentralized fault-tolerant control of uncertain large-scale nonlinear systems with unknown dead zone. Nonlinear Dyn 89, 2573–2592 (2017). https://doi.org/10.1007/s11071-017-3605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3605-z

Keywords

Navigation