Skip to main content
Log in

Active disturbance rejection adaptive control of uncertain nonlinear systems: theory and application

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes an active disturbance rejection adaptive controller for tracking control of a class of uncertain nonlinear systems with consideration of both parametric uncertainties and uncertain nonlinearities by effectively integrating adaptive control with extended state observer via backstepping method. Parametric uncertainties are handled by the synthesized adaptive law and the remaining uncertainties are estimated by extended state observer and then compensated in a feedforward way. Moreover, both matched uncertainties and unmatched uncertainties can be estimated by constructing an extended state observer for each channel of the considered nonlinear plant. Since parametric uncertainties can be reduced by parameter adaptation, the learning burden of extended state observer is much reduced. Consequently, high-gain feedback is avoided and improved tracking performance can be expected. The proposed controller theoretically guarantees a prescribed transient tracking performance and final tracking accuracy in general while achieving asymptotic tracking when the uncertain nonlinearities are not time-variant. The motion control of a motor-driven robot manipulator is investigated as an application example with some suitable modifications and improvements, and comparative simulation results are obtained to verify the high tracking performance nature of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Astrom, K.J., Wittenmark, B.: Adaptive Control, 2nd edn. Dover Publications, New York (2008)

    Google Scholar 

  2. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    MATH  Google Scholar 

  3. Jin, X., Yang, G.: Adaptive synchronization of a class of uncertain complex networks against network deterioration. IEEE Trans. Circuits Syst. I Reg. Pap. 58(6), 1396–1409 (2011)

    Article  MathSciNet  Google Scholar 

  4. Tang, Z., Park, J.H., Lee, T.H.: Topology and parameters recognition of uncertain complex networks via nonidentical adaptive synchronization. Nonlinear Dyn. 85(4), 2171–2181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jin, X.: Robust adaptive switching fault-tolerant control of a class of uncertain systems against actuator faults. Math. Probl. Eng. 2013(852502), 9 (2013)

    MathSciNet  Google Scholar 

  6. Yao, J., Jiao, Z., Ma, D.: A practical nonlinear adaptive control of hydraulic servomechanisms with periodic-like disturbances. IEEE/ASME Trans. Mechatron. 20(6), 2752–2760 (2015)

    Article  Google Scholar 

  7. Yao, J., Deng, W., Jiao, Z.: Adaptive control of hydraulic actuators with LuGre model based friction compensation. IEEE Trans. Ind. Electron. 62(10), 6469–6477 (2015)

    Article  Google Scholar 

  8. Dydek, Z.T., Annaswamy, A.M., Lavretsky, E.: Adaptive control of quadrotor UAVs: a design trade study with flight evaluations. IEEE Trans. Contr. Syst. Technol. 21(4), 1400–1406 (2013)

    Article  Google Scholar 

  9. Ge, S.S., Li, Z.: Robust adaptive control for a class of uncertain MIMO nonlinear systems by state and output feedback. IEEE Trans. Autom. Control. 59(6), 1624–1629 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai, J., Wen, C., Su, H., Liu, Z.: Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control. 58(9), 2388–2394 (2013)

    Article  MathSciNet  Google Scholar 

  11. Utkin, V.I., Guldner, J., Shi, J.: Sliding Mode Control in Electro-mechanical Systems, 2nd edn. CRC Press Inc, Boca Raton (2009)

    Book  Google Scholar 

  12. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, New Jersey (1991)

    MATH  Google Scholar 

  13. Hung, N.V.Q., Tuan, H.D., Narikiyo, T., Apkarian, P.: Adaptive control for nonlinearly parameterized uncertainties in robot manipulators. IEEE Trans. Contr. Syst. Technol. 16(3), 458–468 (2008)

    Article  Google Scholar 

  14. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shtessel, Y., Taleb, M., Plestan, F.: A novel adaptive-gain supertwisting sliding mode controller: methodology and application. Automatica 48(5), 759–769 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xian, B., Dawson, D.M., de Queiroz, M.S., Chen, J.: A continuous asymptotic tracking control strategy for uncertain nonlinear systems. IEEE Trans. Autom. Control. 49(7), 1206–1211 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yao, J., Jiao, Z., Ma, D.: Adaptive robust control of DC motors with extended state observer. IEEE Trans. Ind. Electron. 61(7), 3630–3637 (2014)

    Article  Google Scholar 

  19. Patre, P.M., MacKunis, W., Makkar, C., Dixon, W.E.: Asymptotic tracking for systems with structured and unstructured uncertainties. IEEE Trans. Contr. Syst. Technol. 16(2), 373–379 (2008)

    Article  Google Scholar 

  20. Patre, P.M., MacKunis, W., Dupree, K., Dixon, W.: Modular adaptive control of uncertain Euler–Lagrange systems with additive disturbances. IEEE Trans. Autom. Control. 56(1), 155–160 (2011)

    Article  MathSciNet  Google Scholar 

  21. Yao, J., Jiao, Z., Ma, D., Yan, L.: High accuracy tracking control of hydraulic rotary actuators with modeling uncertainties. IEEE/ASME Trans. Mechatron. 19(2), 633–641 (2014)

    Article  Google Scholar 

  22. Yao, J., Deng, W., Jiao, Z.: RISE-based adaptive control of hydraulic systems with asymptotic tracking. IEEE Trans. Autom. Sci. Eng. (2015). doi:10.1109/TASE.2015.2434393

    Google Scholar 

  23. Yao, B., Tomizuka, M.: Adaptive robust control SISO nonlinear systems in a semi-strict feedback form. Automatica 33(5), 893–900 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  25. Chen, W.: Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mechatron. 9(4), 706–710 (2004)

    Article  Google Scholar 

  26. Davila, J.: Exact tracking using backstepping control design and high-order sliding modes. IEEE Trans. Autom. Control. 58(8), 2077–2081 (2013)

    Article  MathSciNet  Google Scholar 

  27. Gao, Z.: Scaling and bandwidth-parameterization based control tuning. In: Proceedings of the American control conference, pp. 4989–4996 (2003)

  28. Zheng, Q., Gao, L., Gao, Z.: On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics. In: Proceeding of IEEE Conference on Decision and Control, pp. 3501–3506 (2007)

  29. Talole, S.E., Kolhe, J.P., Phadke, S.B.: Extended-state-observer-based control of flexible-joint system with experimental validation. IEEE Trans. Ind. Electron. 57(4), 1411–1419 (2010)

    Article  Google Scholar 

  30. Xing, H.-L., Jeon, J.-H., Park, K.C., Oh, I.-K.: Active disturbance rejection control for precise position tracking of ionic polymer–metal composite actuators. IEEE/ASME Trans. Mechatron. 18(1), 86–95 (2013)

    Article  Google Scholar 

  31. Yao, J., Jiao, Z., Ma, D.: Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping. IEEE Trans. Ind. Electron. 61(11), 6285–6293 (2014)

    Article  Google Scholar 

  32. Tang, Z., Park, J.H., Lee, T.H.: Dynamic output-feedback-based \(\text{ H }_{\infty }\) design for networked control systems with multiple packet dropouts. Appl. Math. Comput. 275, 121–133 (2016)

    MathSciNet  Google Scholar 

  33. Makakar, C., Dixon, D. W., Sawyer, W. G., Hu, G.: A new continuously differentiable friction model for control systems design. In: Proceeding of IEEE/ASME International Conference on Advanced Intelligent Mechatronics., pp. 600–605 (2005)

Download references

Acknowledgements

The first author is very grateful to Professor B. Yao for hosting his visit at Purdue University from October 2010 to October. 2011, and the guidance on adaptive and robust control for nonlinear systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyong Yao.

Additional information

This work was supported by the National Natural Science Foundation of China under Grant 51305203.

Appendices

Appendix 1

Definition of matrix \( {\varLambda }\)

$$\begin{aligned} \Lambda =\left[ {{\begin{array}{ccc} {\Lambda _1 }&{}\quad \mathbf{0}&{}\quad {\Lambda _3 } \\ \mathbf{0}&{}\quad {\varpi _1 }&{}\quad \mathbf{0} \\ {\Lambda _3^T }&{}\quad \mathbf{0}&{}\quad {\Lambda _2 } \\ \end{array} }} \right] \end{aligned}$$
(42)

where 0 denotes zero vector with proper dimensions, and \(\Lambda _{1}\in {\mathbb {R}}^{n\times n}, \Lambda _{2}\in {\mathbb {R}}^{(2n-1) \times (2n-1)}\) and \(\Lambda _{3}\in {\mathbb {R}}^{(2n-1)\times (2n-1)}\) are defined as

$$\begin{aligned} \begin{array}{l} \Lambda _1 =\left[ {{\begin{array}{ccccc} {k_1 w_1 }&{} {-\frac{\rho _1 }{2}}&{} 0&{} \cdots &{} 0 \\ {-\frac{\rho _1 }{2}}&{} {k_2 w_2 }&{} {-\frac{\rho _2 }{2}}&{} \ddots &{} \vdots \\ 0&{} {-\frac{\rho _2 }{2}}&{} {k_3 w_3 }&{} \ddots &{} 0 \\ \vdots &{} \ddots &{} \ddots &{} \ddots &{} {-\frac{\rho _{n-1} }{2}} \\ 0&{} \cdots &{} 0&{} {-\frac{\rho _{n-1} }{2}}&{} {k_n w_n } \\ \end{array} }} \right] ,\\ \Lambda _2 =\left[ {{\begin{array}{cccc} {\varpi _1 }&{} 0&{} \cdots &{} 0 \\ 0&{} {\varpi _2 }&{} \ddots &{} \vdots \\ \vdots &{} \ddots &{} \ddots &{} 0 \\ 0&{} \cdots &{} 0&{} {\varpi _n } \\ \end{array} }} \right] \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{l} \Lambda _3 =\left[ {{\begin{array}{cccccccccc} {-\frac{\beta _1 }{2}}&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ {-\frac{\gamma _{2,1} }{2}}&{} 0&{} {-\frac{\beta _2 }{2}}&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ {-\frac{\gamma _{3,1} }{2}}&{} 0&{} {-\frac{\gamma _{3,2} }{2}}&{} 0&{} {-\frac{\beta _3 }{2}}&{} 0&{} 0&{} 0&{} 0 \\ {-\frac{\gamma _{4,1} }{2}}&{} 0&{} {-\frac{\gamma _{4,2} }{2}}&{} 0&{} {-\frac{\gamma _{4,3} }{2}}&{} \ddots &{} \ddots &{} \ddots &{} \vdots \\ \vdots &{} \vdots &{} \vdots &{} \vdots &{} \vdots &{} \ddots &{} {-\frac{\beta _{n-1} }{2}}&{} 0&{} 0 \\ {-\frac{\gamma _{n,1} }{2}}&{} 0&{} {-\frac{\gamma _{n,2} }{2}}&{} 0&{} {-\frac{\gamma _{n,3} }{2}}&{} \cdots &{} {-\frac{\gamma _{n,n-1} }{2}}&{} 0&{} {-\frac{\beta _n }{2}} \\ \end{array} }} \right] \\ \end{array} \end{aligned}$$

Appendix 2

Proof of Theorem 1

In this case, define \(x_{ei} =\Delta _i (\bar{{x}}_i ,\;t)\) and consider the following Lyapunov function

$$\begin{aligned} V_a =\frac{1}{2}\sum \limits _{i=1}^n w_i z_i^2 +\frac{1}{2}\sum \limits _{i=1}^n \mu _i \varepsilon _i^T P\varepsilon _i +V_\theta (\tilde{\theta },\theta ) \end{aligned}$$
(43)

Noting (7), the time derivative of \(V_{a}\) can be given as

$$\begin{aligned} \dot{V}_a= & {} \sum \limits _{i=1}^n w_i z_i \dot{z}_i +\frac{1}{2}\sum \limits _{i=1}^n \mu _i \left( \dot{\varepsilon }_i^T P\varepsilon _i +\varepsilon _i^T P\dot{\varepsilon }_i \right) \nonumber \\&+\,\tilde{\theta }_\pi ^T \Gamma ^{-1}\dot{\hat{{\theta }}} \end{aligned}$$
(44)

Based on (11), (20), (25), and (28), and noting \(h_{i}(t)=0\), then

$$\begin{aligned} \dot{V}_a= & {} -\sum \limits _{i=1}^n k_i w_i z_i^2 + \sum \limits _{i=1}^{n-1} w_i g_i (\bar{{x}}_i )z_i z_{i+1} +w_1 z_1 \tilde{x}_{e1} \nonumber \\&+\sum \limits _{i=2}^n \left( w_i z_i \tilde{x}_{ei} -w_i \mathop \Sigma \limits _{j=1}^{i-1} \frac{\partial \alpha _{i-1} }{\partial x_j }\tilde{x}_{ej} z_i \right) \nonumber \\&+\,\tilde{\theta }_\pi ^T \left( \Gamma ^{-1}\dot{\hat{{\theta }}}-\tau _n \right) \nonumber \\&+\left( \sum \limits _{k=2}^n w_k z_k \frac{\partial \alpha _{k-1} }{\partial \hat{{\theta }}}\right) \left( \Gamma \tau _n -\dot{\hat{{\theta }}}\right) \nonumber \\&-\frac{1}{2}\mathop \Sigma \limits _{i=1}^n \mu _i \omega _{ei} \left\| {\varepsilon _i } \right\| ^{2} \end{aligned}$$
(45)

Combing the adaptive law in (30), we can upper bound (45) as

$$\begin{aligned} \dot{V}_1\le & {} - \sum \limits _{i=1}^n k_i w_i z_i^2 + \sum \limits _{i=1}^{n-1} w_i g_i (\bar{{x}}_i )z_i z_{i+1} +w_1 z_1 \tilde{x}_{e1} \nonumber \\&+ \sum \limits _{i=2}^n (w_i z_i \tilde{x}_{ei} -w_i \sum \limits _{j=1}^{i-1} \frac{\partial \alpha _{i-1} }{\partial x_j }\tilde{x}_{ej} z_i ) \nonumber \\&-\frac{1}{2}\sum \limits _{i=1}^n \mu _i (\omega _{ei} -1)\left\| {\varepsilon _i } \right\| ^{2}-\frac{1}{2} \sum \limits _{i=1}^n \mu _i \left\| {\varepsilon _i } \right\| ^{2}\nonumber \\ \end{aligned}$$
(46)

Noting that the defined matrix \(\Lambda \) is positive definite and the definition of \(\varepsilon _{i}\), we have

$$\begin{aligned} \dot{V}_a\le & {} - \sum \limits _{i=1}^n k_i w_i z_i^2 + \sum \limits _{i=1}^{n-1} w_i g_i (\bar{{x}}_i )\left| {z_i } \right| \left| {z_{i+1} } \right| \nonumber \\&+\,w_1 \omega _{e1} \left| {z_1 } \right| \left| {\varepsilon _{12} } \right| \nonumber \\&+ \sum \limits _{i=2}^n (w_i \omega _{ei} \left| {z_i } \right| \left| {\varepsilon _{i2} } \right| \nonumber \\&+\,w_i \sum \limits _{j=1}^{i-1} \omega _{ej} \left| {\frac{\partial \alpha _{i-1} }{\partial x_j }} \right| \left| {\varepsilon _{j2} } \right| \left| {z_i } \right| ) \nonumber \\&-\frac{1}{2} \sum \limits _{i=1}^n \mu _i (\omega _{ei} -1)\left\| {\varepsilon _i } \right\| ^{2} \nonumber \\\le & {} -Z^{T}\Lambda Z\le -\lambda _{\min } (\Lambda )(z^{T}z+\varepsilon ^{T}\varepsilon )\buildrel \Delta \over = -W \end{aligned}$$
(47)

where \(Z=[z^{\mathrm{T}}, \varepsilon ^{\mathrm{T}}]^{\mathrm{T}}\in {\mathbb {R}}^{3n}, z=[ {\vert }z_{1}{\vert }, {\ldots }, {\vert }z_{\mathrm{n}}{\vert }]^{\mathrm{T}}, \varepsilon =[{\vert }\varepsilon _{11} {\vert }, {\vert }\varepsilon _{12}{\vert }, {\ldots }, {\vert }\varepsilon _{\mathrm{n1}} {\vert }, {\vert }\varepsilon _{\mathrm{n2}}{\vert }]^{\mathrm{T}}, \lambda _{\min }(\Lambda )\) is the minimal eigenvalue of matrix \(\Lambda \) and W is a positive function. Hence, \(V_{a}\in L_{\infty }\) and \(W\in L_{2}\) and the error signal Z is bounded. From Assumptions 2 and 3, it can be inferred that all the states \(x_{1}, {\ldots }, x_{\mathrm{n}}\) and \(x_{\mathrm{e1}}, {\ldots }, x_{\mathrm{en}}\), and their estimates are bounded. Noting (17), we know that all the virtual control laws are bounded. Based on the smooth projection mapping (3) and the expression of the derivative of virtual control laws, the boundness of the final control input u can be concluded. That is to say, all signals in the closed loop system are bounded. Based on the dynamics of \(z_{1}\), ..., \(z_{\mathrm{n}}\), it is easy to check that the time derivative of W is bounded, thus W is uniformly continuous. By applying Barbalat’s lemma, \(W\rightarrow 0\) as \(t\rightarrow \infty \), which leads to the results in Theorem 1. \(\square \)

Appendix 3

Proof of Theorem 2

If the uncertain nonlinearities \(\Delta _{i}, i=1, {\ldots }, n\), are time-variant, we first use the definition of \(x_{{ei}} =\Delta _i (\bar{{x}}_i ,t)-\tilde{\theta }_\pi ^T \varphi _i (\bar{{x}}_i)\). Based on (14), (20), (25), and (28), the time derivative of \(V_{\mathrm{b}}\) defined in (31) is

$$\begin{aligned} \dot{V}_b= & {} -\sum \limits _{i=1}^n k_i w_i z_i^2 + \sum \limits _{i=1}^{n-1} w_i g_i (\bar{{x}}_i )z_i z_{i+1} +w_1 z_1 \tilde{x}_{e1} \nonumber \\&+\sum \limits _{i=2}^{n-1} \left( w_i z_i \tilde{x}_{ei} -w_i \sum \limits _{j=1}^{i-1} \frac{\partial \alpha _{i-1} }{\partial x_j }\tilde{x}_{ej} z_i \right) \nonumber \\&+\left( \sum \limits _{k=2}^n w_k z_k \frac{\partial \alpha _{k-1} }{\partial \hat{{\theta }}}\right) \left( \Gamma \tau _n -\dot{\hat{{\theta }}}\right) \nonumber \\&-\frac{1}{2}\sum \limits _{i=1}^n \mu _i \omega _{ei} \left\| {\varepsilon _i } \right\| ^{2} \nonumber \\&+\sum \limits _{i=1}^n \mu _i \varepsilon _i^T PB_2 \frac{h_i (t)}{\omega _{ei}} \end{aligned}$$
(48)

Combining the adaptive law in (30), and noting the definitions in (29), we can upper bound (48) as

$$\begin{aligned} \dot{V}_b\le & {} -\sum \limits _{i=1}^n k_i w_i z_i^2 +\mathop \sum \limits _{i=1}^{n-1} w_i g_i (\bar{{x}}_i )\left| {z_i } \right| \left| {z_{i+1} } \right| \nonumber \\&+\,w_1 \omega _{e1} \left| {z_1 } \right| \left| {\varepsilon _{12} } \right| \nonumber \\&+\sum \limits _{i=2}^n (w_i \omega _{ei} \left| {z_i } \right| \left| {\varepsilon _{i2} } \right| \nonumber \\&+\,w_i \mathop \sum \limits _{j=1}^{i-1} \omega _{ej} \left| {\frac{\partial \alpha _{i-1} }{\partial x_j }} \right| \left| {\varepsilon _{j2} } \right| \left| {z_i } \right| ) \nonumber \\&-\frac{1}{2} \sum \limits _{i=1}^n \mu _i (\omega _{ei} -1)\left\| {\varepsilon _i } \right\| ^{2}-\frac{1}{2} \sum \limits _{i=1}^n \mu _i \left\| {\varepsilon _i } \right\| ^{2} \nonumber \\&+ \sum \limits _{i=1}^n \mu _i \left\| {\varepsilon _i } \right\| \frac{\left\| {PB_2 } \right\| \left| {h_i } \right| _{\max } }{\omega _{ei} } \nonumber \\\le & {} -Z^{T}\Lambda Z+\zeta \end{aligned}$$
(49)

Noting that the matrix \(\Lambda \) is positive definite, thus

$$\begin{aligned} \dot{V}_b\le & {} -\lambda _{\min } (\Lambda )(\left\| z \right\| ^{2}+\left\| \varepsilon \right\| ^{2})+\zeta \nonumber \\\le & {} -\lambda _{\min } (\Lambda )\left[ \lambda _1 \sum _{i=1}^n {w_i z_i^2 } +\sum _{i=1}^n {\frac{1}{\mu _i \lambda _{\max } (P)}\mu _i \varepsilon _i^T P\varepsilon _i } \right] +\zeta \nonumber \\\le & {} -\lambda V_b +\zeta \end{aligned}$$
(50)

which leads to (32) by using the Comparison Lemma [2]. Then the error signal Z is bounded. Similar to the proof of Theorem 1, the boundness of all closed loop system signals can also be ensured. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Deng, W. Active disturbance rejection adaptive control of uncertain nonlinear systems: theory and application. Nonlinear Dyn 89, 1611–1624 (2017). https://doi.org/10.1007/s11071-017-3538-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3538-6

Keywords

Navigation