Skip to main content
Log in

Nonlinear dynamic analysis of a parametrically excited vehicle–bridge interaction system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a nonlinear supported Euler–Bernoulli beam under harmonic excitation coupled to a 2 degree of freedom vehicle model with cubic nonlinear stiffness and damping is investigated. The equations of motion are derived by Newton’s law and discretized into a set of coupled second-order nonlinear differential equations via Galerkin’s method with cubic nonlinear terms. Based on the created model, numerical simulations have been conducted using the Runge–Kutta integration method to perform a parametric study on influences of the nonlinear support stiffness coefficient, mass ratio, excitation amplitude and position relation for the vehicle–bridge interaction (VBI) system by using bifurcation diagram and 3-D frequency spectrum. The results indicate that depending on different parameters, a diverse range of periodic motion, quasi-periodic response, chaotic behavior and jump discontinuous phenomenon are observed. And the chaotic regions are scattered between a number of periodic/quasi-periodic motions. The study may contribute to a further understanding of the dynamic characteristics and present useful information to dynamic design and vibration control for the VBI system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cao, D.P., Song, X.B., Ahmadian, M.: Editors’ perspectives: road vehicle suspension design, dynamics, and control. Veh. Syst. Dyn. 49, 3–28 (2011)

    Article  Google Scholar 

  2. Pazooki, A., Rakheja, S., Cao, D.P.: Modeling and validation of off-road vehicle ride dynamics. Mech. Syst. Signal Process. 28, 679–695 (2012)

    Article  Google Scholar 

  3. Litak, G., Borowiec, M., Ali, M., Saha, L.M., Friswell, M.I.: Pulsive feedback control of a quarter car model forced by a road profile. Chaos Solitons Fractals 33, 1672–1676 (2007)

    Article  Google Scholar 

  4. Litak, G., Borowiec, M., Friswell, M.I., Szabelski, K.: Chaotic vibration of a quarter-car model excited by the road surface profile. Commun. Nonlinear Sci. 13, 1373–1383 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borowiec, M., Litak, G.: Transition to chaos and escape phenomenon in two-degrees-of-freedom oscillator with a kinematic excitation. Nonlinear Dyn. 70, 1125–1133 (2012)

    Article  Google Scholar 

  6. Sheng, Y., Wu, G.Q.: Quantitative study of automotive nonlinear suspension system based on incremental harmonic balance method. J. Tongji Univ. (Nat. Sci.) 39, 405–410 (2011)

    Google Scholar 

  7. Zhou, S.H., Song, G.Q., Sun, M.N., Ren, Z.H.: Nonlinear dynamic analysis of a quarter vehicle system with external periodic excitation. Int. J. NonLinear Mech. 84, 82–93 (2016)

    Article  Google Scholar 

  8. Ozgur, D., Ilknur, K., Saban, C.: Modeling and control of a nonlinear half-vehicle suspension system: a hybrid fuzzy logic approach. Nonlinear Dyn. 67, 2139–2151 (2012)

    Article  Google Scholar 

  9. Yang, Z.Y., Liang, S., Shen, Y.J., Zhu, Q.: Vibration suppression of four degree-of-freedom nonlinear vehicle suspension model excited by the consecutive speed humps. J. Vib. Control 22, 1–18 (2014)

    Google Scholar 

  10. Marzbanrad, J., Keshavarzi, A.: Chaotic vibrations of a nonlinear air suspension system under consecutive half sine speed bump. Indian J. Sci. Technol. 8, 72–84 (2015)

    Article  Google Scholar 

  11. Silveira, M., Pontes, J.B.R., Balthazar, J.M.: Use of nonlinear asymmetrical shock absorber to improve comfort on passenger vehicles. J. Sound Vib. 333, 2114–2129 (2014)

    Article  Google Scholar 

  12. Silveira, M., Wahi, P., Fernandes, J.C.M.: Effects of asymmetrical damping on a 2 DOF quarter-car model under harmonic excitation. Commun. Nonlinear Sci. 43, 14–24 (2017)

    Article  MathSciNet  Google Scholar 

  13. Sapountzakis, E.J., Kampitsis, A.E.: Nonlinear dynamic analysis of Timoshenko beam-columns partially supported on tensionless Winkler foundation. Comput. Struct. 88, 1206–1219 (2010)

    Article  Google Scholar 

  14. Ansari, M., Esmailzadeh, E., Younesian, D.: Frequency analysis of finite beams on nonlinear Kelvin–Voight foundation under moving loads. J. Sound Vib. 330, 1455–1471 (2011)

    Article  Google Scholar 

  15. Ansari, M., Esmailzadeh, E., Younesian, D.: Internal–external resonance of beams on non-linear viscoelastic foundation traversed by moving load. Nonlinear Dyn. 61, 163–182 (2010)

    Article  MATH  Google Scholar 

  16. Huang, J.L., Sub, R.K.L., Lee, Y.Y., Chen, S.H.: Nonlinear vibration of a curved beam under uniform base harmonic excitation with quadratic and cubic nonlinearities. J. Sound Vib. 330, 5151–5164 (2011)

    Article  Google Scholar 

  17. Huang, J.L., Sub, R.K.L., Li, W.H., Chen, S.H.: Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances. J. Sound Vib. 330, 471–485 (2011)

    Article  Google Scholar 

  18. Ghayesh, M.H.: Stability and bifurcations of an axially moving beam with an intermediate spring support. Nonlinear Dyn. 69, 193–210 (2012)

    Article  MathSciNet  Google Scholar 

  19. Ghayesh, M.H.: Nonlinear dynamic response of a simply-supported Kelvin–Voigt viscoelastic beam, additionally supported by a nonlinear spring. Nonlinear Anal. Real World Appl. 13, 1319–1333 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hasan, A.S.M., Lee, Y.Y., Leung, A.Y.T.: The multi-level residue harmonic balance solutions of multi-mode nonlinearly vibrating beams on an elastic foundation. J. Vib. Control 1, 1–18 (2014)

    Google Scholar 

  21. Bhattiprolu, U., Davies, P., Bajaj, A.K.: Static and dynamic response of beams on nonlinear viscoelastic unilateral foundations: a Multimode approach. J. Vib. Acoust. 136, 1–9 (2014)

    Article  Google Scholar 

  22. Bhattiprolu, U., Bajaj, A.K., Davies, P.: Periodic response predictions of beams on nonlinear and viscoelastic unilateral foundations using incremental harmonic balance method. Int. J. Solids Struct. 99, 28–39 (2016)

  23. Esmailzadeh, E., Jalili, N.: Vehicle–passenger–structure interaction of uniform bridges traversed by moving vehicles. J. Sound Vib. 260, 611–635 (2003)

    Article  Google Scholar 

  24. Yang, Y.B., Wu, Y.S.: A versatile element for analyzing vehicle–bridge interaction response. Eng. Struct. 23, 452–469 (2001)

    Article  Google Scholar 

  25. Azimi, H., Galal, K., Pekau, O.A.: A modified numerical VBI element for vehicles with constant velocity including road irregularities. Eng. Struct. 33, 2212–2220 (2011)

    Article  Google Scholar 

  26. Azimi, H., Galal, K., Pekau, O.A.: A numerical element for vehicle–bridge interaction analysis of vehicles experiencing sudden deceleration. Eng. Struct. 49, 792–805 (2013)

    Article  Google Scholar 

  27. Zarfam, R., Khaloo, A.R.: Vibration control of beams on elastic foundation under a moving vehicle and random lateral excitations. J. Sound Vib. 331, 1217–1232 (2012)

    Article  Google Scholar 

  28. Qian, C.Z., Chen, C.P., Hong, L., Zhou, G.W.: Nonlinear dynamics of the vehicle–bridge coupled Interaction system. Nonlinear Eng. 2, 79–82 (2013)

    Article  Google Scholar 

  29. Li, S.H., Yang, S.H., Chen, L.Q.: A nonlinear vehicle–road coupled model for dynamics research. J. Comput. Nonlinear Dyn. 8, 1–14 (2013)

    Google Scholar 

  30. Lu, Z.R., Liu, J.K.: Parameters identification for a coupled bridge–vehicle system with spring-mass attachments. Appl. Math. Comput. 219, 9174–9186 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Zhong, H., Yang, M.J., Gao, Z.L.: Dynamic responses of prestressed bridge and vehicle through bridge–vehicle interaction analysis. Eng. Struct. 87, 116–125 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Collaborative Innovation Center of Major Machine Manufacturing in Liaoning; National Support Program, the key common technology research and demonstration of paving equipment for subgrade in alpine (No. 2015BAF07B07). The authors gratefully acknowledge the financial support provided by Natural Science Foundation of China (No. 51475084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiqiu Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Song, G., Ren, Z. et al. Nonlinear dynamic analysis of a parametrically excited vehicle–bridge interaction system. Nonlinear Dyn 88, 2139–2159 (2017). https://doi.org/10.1007/s11071-017-3368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3368-6

Keywords

Navigation