Skip to main content
Log in

Stability and stabilization of a class of fractional-order nonlinear systems for \(\varvec{0<}\,{\varvec{\alpha }} \,\varvec{< 2}\)

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the stability and stabilization problem of fractional-order nonlinear systems for \(0<\alpha <2\). Based on the fractional-order Lyapunov stability theorem, S-procedure and Mittag–Leffler function, the stability conditions that ensure local stability and stabilization of a class of fractional-order nonlinear systems under the Caputo derivative with \(0<\alpha <2\) are proposed. Finally, typical instances, including the fractional-order nonlinear Chen system and the fractional-order nonlinear Lorenz system, are implemented to demonstrate the feasibility and validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Ahn, H.S., Chen, Y.Q., Podlubny, I.: Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. Appl. Math. Comput. 187, 27–34 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Wen, X.J., Wu, Z.M., Lu, J.G.: Stability analysis of a class of nonlinear fractional-order systems. IEEE Trans. Circuits Syst. II Express Briefs 55, 1178–1182 (2008)

    Article  Google Scholar 

  4. Huang, S.H., Zhang, R.F., Chen, D.Y.: Stability of nonlinear fractional-order time varying systems. J. Comput. Nonlinear Dyn. 11, 031007 (2016)

    Article  Google Scholar 

  5. Rudolf, G., Anatoly, A.K., Francesco, M., Sergei, V.R.: Mittag–Leffler Functions, Related Topics and Applications. Springer, New York (2014)

    MATH  Google Scholar 

  6. Li, C., Wang, J.C., Lu, J.G., Ge, Y.: Observer-based stabilisation of a class of fractional order non-linear systems for \(0 < \alpha < 2\) case. IET Control Theory Appl. 8, 1238–1246 (2014)

    Article  MathSciNet  Google Scholar 

  7. Balasubramaniam, P., Tamilalagan, P.: Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi’s function. Appl. Math. Comput. 256, 232–46 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Wang, J.W., Zeng, C.B.: Synchronization of fractional-order linear complex networks. ISA Trans. 55, 129–134 (2015)

    Article  Google Scholar 

  9. Ding, Z.X., Shen, Y.: Global dissipativity of fractional-order neural networks with time delays and discontinuous activations. Neurocomputing 196, 159–166 (2016)

    Article  Google Scholar 

  10. Valerio, D., Trujillo, J.J., Rivero, M., Machado, J.A.T., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222, 1827–1846 (2013)

    Article  Google Scholar 

  11. Xu, Y., Li, Y.G., Liu, D.: Response of fractional oscillators with viscoelastic term under random excitation. J. Comput. Nonlinear Dyn. 9, 031015 (2014)

    Article  Google Scholar 

  12. Xu, B.B., Chen, D.Y., Zhang, H., Wang, F.F.: Modeling and stability analysis of a fractional-order Francis hydro-turbine governing system. Chaos Solitons Fractals 75, 50–61 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xin, B.G., Zhang, J.Y.: Finite-time stabilizing a fractional-order chaotic financial system with market confidence. Nonlinear Dyn. 79, 1399–1409 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Baleanu, D., Golmankhaneh, A.K., Golmankhaneh, A.K., Baleanu, M.C.: Fractional electromagnetic equations using fractional forms. Int. J. Theor. Phys. 48, 3114–3123 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghasemi, S., Tabesh, A., Askari-Marnani, J.: Application of fractional calculus theory to robust controller design for wind turbine generators. IEEE Trans. Energy Convers. 29, 780–787 (2014)

    Article  Google Scholar 

  16. Kusnezov, D., Bulgac, A., Dang, G.D.: Quantum levy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–1139 (1999)

    Article  Google Scholar 

  17. Chen, L.P., He, Y.G., Chai, Y., Wu, R.C.: New results on stability and stabilization of a class of nonlinear fractional-order systems. Nonlinear Dyn. 75, 633–641 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, H.H., Sun, K.H., He, S.B.: Characteristic analysis and DSP realization of fractional-order simplified Lorenz system based on Adomian decomposition method. Int. J. Bifurc. Chaos 25, 1550085 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lei, Y.M., Fu, R., Yang, Y., Wang, Y.Y.: Dichotomous-noise-induced chaos in a generalized Duffing-type oscillator with fractional-order deflection. J. Sound Vib. 363, 68–76 (2016)

    Article  Google Scholar 

  20. Chen, L.P., Pan, W., Wu, R.C., Machado, J.A.T., Lopes, A.M.: Design and implementation of grid multi-scroll fractional-order chaotic attractors. Chaos 26, 084303 (2016)

    Article  MathSciNet  Google Scholar 

  21. Zhou, P., Cai, H., Yang, C.D.: Stabilization of the unstable equilibrium points of the fractional-order BLDCM chaotic system in the sense of Lyapunov by a single-state variable. Nonlinear Dyn. 84, 2357–2361 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rivero, M., Rogosin, S.V., Machado, J.A.T, Trujillo, J.J.: Stability of fractional order systems. Math. Probl. Eng. 2013, 356215 (2013)

  23. Sabatier, J., Moze, M., Farges, C.: LMI stability conditions for fractional order systems. Comput. Math. Appl. 59, 1594–1609 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu, J.G., Chen, G.R.: Robust stability and stabilization of fractional order interval systems: an LMI approach. IEEE Trans. Autom. Control 54, 1294–1299 (2009)

    Article  MathSciNet  Google Scholar 

  25. Shahri, E.S.A., Alfi, A., Machado, J.A.T.: An extension of estimation of domain of attraction for fractional order linear system subject to saturation control. Appl. Math. Lett. 47, 26–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Trigeassou, J., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Signal Process 91, 437–445 (2011)

    Article  MATH  Google Scholar 

  27. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)

    Article  MathSciNet  Google Scholar 

  28. Liu, S., Jiang, W., Li, X.Y., Zhou, X.F.: Lyapunov stability analysis of fractional nonlinear systems. Appl. Math. Lett. 51, 13–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ding, D.S., Qi, D.L., Wang, Q.: Non-linear Mittag–Leffler stabilisation of commensurate fractional-order non-linear systems. IET Control Theory Appl. 9, 681–690 (2015)

    Article  MathSciNet  Google Scholar 

  31. Chen, J.J., Zeng, Z.G., Jiang, P.: Global Mittag–Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Networks 51, 1–8 (2014)

    Article  MATH  Google Scholar 

  32. Aghababa, M.P.: Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller. Commun. Nonlinear Sci. Numer. Simul. 17, 2670–2681 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Aghababa, M.P.: A novel terminal sliding mode controller for a class of non-autonomous fractional-order systems. Nonlinear Dyn. 73, 679–688 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jakovljevic, B., Pisano, A., Rapaic, M.R., Usai, E.: On the sliding-mode control of fractional-order nonlinear uncertain dynamics. Int. J. Robust Nonlinear Control 26, 782–798 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Podlubny, I.: Fractional-order systems and \(\text{ PI }^{\lambda } \text{ D }^{\mu }\) controllers. IEEE Trans. Autom. Control 44, 208–214 (1999)

    Article  MathSciNet  Google Scholar 

  36. Wang, B., Xue, J.Y., Wu, F.J., Zhu, D.L.: Stabilization conditions for fuzzy control of uncertain fractional order non-linear systems with random disturbances. IET Control Theory Appl. 10, 637–647 (2016)

  37. Chen, D.Y., Zhao, W.L., Sprott, J.C., Ma, X.Y.: Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonlinear Dyn. 73, 1495–1505 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, B., Ding, J.L., Wu, F.J., Zhu, D.L.: Robust finite-time control of fractional-order nonlinear systems via frequency distributed model. Nonlinear Dyn. 85, 2133–2142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lan, Y.H., Huang, H.X., Zhou, Y.: Observer-based robust control of a (\(1 \le \alpha < 2\)) fractional-order uncertain systems: a linear matrix inequality approach. IET Control Theory Appl. 6, 229–234 (2012)

    Article  MathSciNet  Google Scholar 

  40. Zhang, R.X., Tian, G., Yang, S.P., Cao, H.F.: Stability analysis of a class of fractional order nonlinear systems with order lying in (0, 2). ISA Trans. 56, 102–110 (2015)

    Article  Google Scholar 

  41. Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the scientific research foundation of the National Natural Science Foundation (Grant Numbers 51509210 and 51479173), Shaanxi province science and technology plan (Grant Number 2016KTZDNY-01-01), the Science and Technology Project of Shaanxi Provincial Water Resources Department (Grant Number 2015slkj-11), the International Cooperation Project of Ministry of Science and Technology (2014DFG72150) and the 111 Project from the Ministry of Education of China (No. B12007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Wang, B. Stability and stabilization of a class of fractional-order nonlinear systems for \(\varvec{0<}\,{\varvec{\alpha }} \,\varvec{< 2}\) . Nonlinear Dyn 88, 973–984 (2017). https://doi.org/10.1007/s11071-016-3288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3288-x

Keywords

Navigation