Skip to main content
Log in

Fractal dimension and Wada measure revisited: no straightforward relationships in NDDS

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An extended Newton’s discrete dynamical system with a complex control parameter is investigated in this paper. A novel computational algorithm is introduced for the evaluation of Wada measure. A nontrivial relationship between the fractal dimension and the Wada measure is revealed in NDDS. It is demonstrated that the reduction of the fractal dimension of basin boundaries of coexisting attractors does not automatically imply a lower Wada measure of these boundaries. Computational experiments are used to illustrate what impact the complexity of the relationship between fractal dimension and Wada measure does have in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Aguirre, J., Sanjuán, M.A.: Unpredictable behavior in the Duffing oscillator: Wada basins. Phys. D: Nonlinear Phenom. 171(1–2), 41–51 (2002). doi:10.1016/S0167-2789(02)00565-1

    Article  MathSciNet  MATH  Google Scholar 

  2. Amrein, M., Wihler, T.P.: An adaptive Newton-method based on a dynamical systems approach. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2958–2973 (2014). doi:10.1016/j.cnsns.2014.02.010

    Article  MathSciNet  Google Scholar 

  3. Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, Hoboken (1978)

    MATH  Google Scholar 

  4. Barnsley, M.F., Rising, H.: Fractals Everywhere. Morgan Kaufmann, Burlington (2000)

    Google Scholar 

  5. Breban, R., Nusse, H.E.: On the creation of Wada basins in interval maps through fixed point tangent bifurcation. Phys. D: Nonlinear Phenom. 207(1–2), 52–63 (2005). doi:10.1016/j.physd.2005.05.012

    Article  MathSciNet  MATH  Google Scholar 

  6. Cartwright, J.H.: Newton maps: fractals from Newton’s method for the circle map. Comput. Gr. 23(4), 607–612 (1999). doi:10.1016/S0097-8493(99)00078-3

    Article  Google Scholar 

  7. Cayley, A.: Application of the Newton–Fourier method to an imaginary root of an equation. Q. J. Pure Appl. Math 16, 179–185 (1879)

    MATH  Google Scholar 

  8. Chandra Sekhar, D., Ganguli, R.: Fractal boundaries of basin of attraction of Newton–Raphson method in helicopter trim. Comput. Math. Appl. 60(10), 2834–2858 (2010). doi:10.1016/j.camwa.2010.09.040

    Article  MathSciNet  MATH  Google Scholar 

  9. Daza, A., Wagemakers, A., Sanjuán, M.A.F., Yorke, J.A.: Testing for Basins of Wada. Sci. Rep. 5, 16,579 (2015). doi:10.1038/srep16579

    Article  Google Scholar 

  10. Drexler, M., Sobey, I., Bracher, C.: On the fractal characteristics of a stabilised Newton method. Oxford University Computing Laboratory, Oxford (1995)

    Google Scholar 

  11. Drexler, M., Sobey, I., Bracher, C.: Fractal Characteristics of Newton’s Method on Polynomials. Oxford University Computer Laboratory, Oxford (1996)

    Google Scholar 

  12. Epureanu, B.I., Greenside, H.S.: Fractal basins of attraction associated with a damped Newton’s method. SIAM Rev. 40(1), 102–109 (1998). doi:10.1137/S0036144596310033

    Article  MathSciNet  MATH  Google Scholar 

  13. Fedaravičius, A.P., Cao, M., Ragulskis, M.: Control of a dendritic neuron driven by a phase-independent stimulation. Chaos Solitons Fractals 85, 77–83 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frame, M., Neger, N.: Newton’s Method and the Wada property: a Graphical Approach. Coll. Math. J. 38(3), 192–204 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Gilbert, W.J.: Generalizations of Newton’s method. Fractals 09(03), 251–262 (2001). doi:10.1142/S0218348X01000737

    Article  MathSciNet  MATH  Google Scholar 

  16. Holt, R., Schwartz, I.: Newton’s method as a dynamical system: global convergence and predictability. Phys. Lett. A 105(7), 327–333 (1984). doi:10.1016/0375-9601(84)90273-1

    Article  MathSciNet  Google Scholar 

  17. Huber, P.J.: Robust Statistics. Springer, Berlin (2011)

    Book  Google Scholar 

  18. Straffin Jr., P.: Newton’s method and fractal patterns. Applications of Calculus 3, 68–84 (1991)

    Google Scholar 

  19. Kennedy, J., Yorke, J.A.: Basins of Wada. Phys. D 51(1–3), 213–225 (1991). doi:10.1016/0167-2789(91)90234-Z

    Article  MathSciNet  MATH  Google Scholar 

  20. Krause, E.F.: Taxicab Geometry: An Adventure in Non-Euclidean Geometry. Courier Corporation, Mineola (1975)

    Google Scholar 

  21. Landauskas, M., Ragulskis, M.: Clocking convergence to a stable limit cycle of a periodically driven nonlinear pendulum. Chaos: Interdisc. J. Nonlinear Sci. 22(3), 033,138 (2012)

    Article  MathSciNet  Google Scholar 

  22. Nusse, H.E., Yorke, J.A.: Wada basin boundaries and basin cells. Phys. D 90(3), 242–261 (1996). doi:10.1016/0167-2789(95)00249-9

    Article  MathSciNet  MATH  Google Scholar 

  23. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  24. Poon, L., Campos, J., Edward, O., Grebogi, C.: Wada basin boundaries in chaotic scattering. Int. J. Bifurc. Chaos 06(02), 251–265 (1996). doi:10.1142/S0218127496000035

    Article  MathSciNet  MATH  Google Scholar 

  25. Portela, S., Iber, E.: Fractal and Wada exit basin boundaries in tokamaks. Int. J. Bifurc. Chaos 17(11), 4067–4079 (2007). doi:10.1142/S021812740701986X

    Article  MathSciNet  MATH  Google Scholar 

  26. Sarkar, N., Chaudhuri, B.: An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans. Syst. Man Cybern. 24(1), 115–120 (1994)

    Article  Google Scholar 

  27. Schröder, E.: Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2(2), 317–365 (1870). doi:10.1007/BF01444024

    Article  MathSciNet  Google Scholar 

  28. Sobey, I.J.: Characteristics of Newton’s method on polynomials. Oxford Computer Lab, Oxford (1996)

    Google Scholar 

  29. Susanto, H., Karjanto, N.: Newton’s method’s basins of attraction revisited. Appl. Math. Comput. 215(3), 1084–1090 (2009). doi:10.1016/j.amc.2009.06.041

    MathSciNet  MATH  Google Scholar 

  30. Sweet, D., Ott, E., Yorke, J.A.: Topology in chaotic scattering. Nature 399(6734), 315–316 (1999). doi:10.1038/20573

    Article  MathSciNet  Google Scholar 

  31. Vandermeer, J.: Wada basins and qualitative unpredictability in ecological models: a graphical interpretation. Ecol. Model. 176(1–2), 65–74 (2004). doi:10.1016/j.ecolmodel.2003.10.028

    Article  Google Scholar 

  32. Vandermeer, J., Stone, L., Blasius, B.: Categories of chaos and fractal basin boundaries in forced predator–prey models. Chaos Solitons Fractals 12(2), 265–276 (2001). doi:10.1016/S0960-0779(00)00111-9

  33. Walsh, J.: The dynamics of Newton’s method for cubic polynomials. Coll. Math. J. 26, 22–28 (1995)

    Article  MATH  Google Scholar 

  34. Wang, X., Yu, X.: Julia sets for the standard Newton’s method, Halley’s method, and Schröder’s method. Appl. Math. Comput. 189(2), 1186–1195 (2007). doi:10.1016/j.amc.2006.12.002

    MathSciNet  MATH  Google Scholar 

  35. Zhang, Y., Luo, G.: Unpredictability of the Wada property in the parameter plane. Phys. Lett. A 376(45), 3060–3066 (2012). doi:10.1016/j.physleta.2012.08.015

    Article  Google Scholar 

  36. Zhang, Y., Luo, G.: Wada bifurcations and partially Wada basin boundaries in a two-dimensional cubic map. Phys. Lett. A 377(18), 1274–1281 (2013). doi:10.1016/j.physleta.2013.03.027

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Financial support from the Lithuanian Science Council under project no. MIP078 / 15 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minvydas Ragulskis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziaukas, P., Ragulskis, M. Fractal dimension and Wada measure revisited: no straightforward relationships in NDDS. Nonlinear Dyn 88, 871–882 (2017). https://doi.org/10.1007/s11071-016-3281-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3281-4

Keywords

Navigation