Skip to main content
Log in

The Riemann–Bäcklund method to a quasiperiodic wave solvable generalized variable coefficient (\(\varvec{2+1}\))-dimensional KdV equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the Riemann–Bäcklund method is extended to a generalized variable coefficient (\(2+1\))-dimensional Korteweg–de Vries equation. The soliton and quasiperiodic wave solutions are investigated systematically. The relations between the quasiperiodic wave solutions and the soliton solutions are rigorously established by a limiting procedure. It is proved that the periodic wave solutions tend to the soliton solutions under a small amplitude limit. Furthermore, the propagation characteristics of the soliton solutions and periodic wave solutions are discussed through the graphical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Olver, P.J.: Application of Lie Groups to Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  2. Bluman, G.W., Anco, S.C.: Symmetry and Integration Methods for Differential Equations. Springer, New York (2002)

    MATH  Google Scholar 

  3. Hirota, R.: Direct methods in soliton theory. In: Bullough, R.K., Caudrey, P.J. (eds.) Solitons, pp. 157–176. Springer, Berlin (1980)

    Chapter  Google Scholar 

  4. Hrota, R.: Exact N-soliton solutions of the wave equation of long wave in shallow-water and in nonlinear lattice. J. Math. Phys. 14, 810–814 (1973)

    Article  MathSciNet  Google Scholar 

  5. Ablowitz, M.J., Clarkson, P.A.: Solitons; Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  6. Boiti, M., Pempinelli, F., Pogrebkov, A.K., Prinari, B.: Inverse scattering theory of the heat equation for a perturbed one-soliton potential. J. Math. Phys. 43, 1044 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ganguly, A., Das, A.: Generalized Korteweg–de Vries equation induced from position-dependent effective mass quantum models and mass-deformed soliton solution through inverse scattering transform. J. Math. Phys. 55, 112102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rangwala, A.A., Rao, J.A.: Bäcklund transformations, soliton solutions and wave functions of Kaup–Newell and Wadati–Konno–Ichikawa systems. J. Math. Phys. 31, 1126 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karasu, A., Sakovich, S.Y.: Bäcklund transformation and special solutions for the Drinfeld–Sokolov–Satsuma–Hirota system of coupled equations. J. Phys. A: Math. Gen. 34, 7355–7358 (2001)

    Article  MATH  Google Scholar 

  10. Matveev, V.A., Salle, M.A.: Darboux Transformation and Soliton. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  11. Zhao, H.H., Zhao, X.J., Hao, H.Q.: Breather-to-soliton conversions and nonlinear wave interactions in a coupled Hirota system. Appl. Math. Lett. 61, 8–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, R., Hao, H.Q.: Breathers and localized solitons for the Hirota–Maxwell–Bloch system on constant backgrounds in erbium doped fibers. Ann. Phys. 344, 10–16 (2014)

    Article  MATH  Google Scholar 

  13. Guo, R., Hao, H.Q.: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2426–2435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gesztesy, F., Holden, H.: Soliton Equations and Their Algebro-Geometric Solutions I: (\(1+1\))-Dimensional Continuous Models. Cambridge University Press, New York (2003)

    Book  MATH  Google Scholar 

  15. Gesztesy, F., Holden, H.: Soliton Equations and Their Algebro-Geometric Solutions II: (\(1+1\))-Dimensional Discrete Models. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  16. Nakamura, A.: A direct method of calculating periodic wave solutions to nonlinear evolution equations. I. exact two-periodic wave solution. J. Phys. Soc. Jpn. 47, 1701–1705 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nakamura, A.: A direct method of calculating periodic wave solutions to nonlinear evolution equations. II. exact one- and two-periodic wave solution of the coupled bilinear equations. J. Phys. Soc. Jpn. 48, 1365–1370 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fan, E.G., Hon, Y.C.: Quasiperiodic waves and asymptotic behaviour for Bogoyavlenskii’s breaking soliton equation in (\(2+1\)) dimensions. Phys. Rev. E 78, 036607 (2008)

    Article  MathSciNet  Google Scholar 

  19. Fan, E.G., Hon, Y.C.: On a direct procedure for the quasi-periodic wave solutions of the supersymmetric Ito’s equation. Rep. Math. Phys. 66(3), 355–365 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fan, E.G.: Supersymmetric KdV–Sawada–Kotera–Ramani equation and its quasi-periodic wave solutions. Phys. Lett. A 374, 744–749 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, W.X., Zhou, R.G., Gao, L.: Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in (\(2+1\)) dimensions. Mod. Phys. Lett. A 21, 1677–1688 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fan, E.G.: Quasi-periodic waves and an asymptotic property for the asymmetrical Nizhnik–Novikov–Veselov equation. J. Phys. A: Math. Theor. 42, 095206 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, Y.R., Song, M., Liu, Z.R.: Soliton and Riemann theta function quasi-periodic wave solutions for a (\(2+1\))-dimensional generalized shallow water wave equation. Nonlinear Dyn. 82, 333–347 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Qiao, Z.J., Fan, E.G.: Negative-order Korteweg–de Vries equtions. Phys. Rev. E 86, 016601 (2012)

    Article  Google Scholar 

  25. Zhao, Z.L., Han, B.: Quasiperiodic wave solutions of a (\(2+1\))-dimensional generalized breaking soliton equation via bilinear Bäcklund transformation. Eur. Phys. J. Plus 131, 128 (2016)

    Article  Google Scholar 

  26. Wang, Y.H., Chen, Y.: Binary Bell polynomial manipulations on the integrability of a generalized (\(2+1\))-dimensional Korteweg–de Vries equation. J. Math. Anal. Appl. 400, 624–634 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kovalyov, M.: Uncertainty principle for the nonlinear waves of the Korteweg–de Vries equation. Chaos Solitons Fractals 32, 431–444 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Toda, K., Yu, S.J.: The investigation into the Schwarz–Korteweg–de Vries equation and the Schwarz derivative in (\(2+1\)) dimensions. J. Math. Phys. 41, 4747–4751 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Peng, Y.Z.: A new (\(2+1\))-dimensional KdV equation and its localized structures. Commun. Theor. Phys. 54, 863–865 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lü, X., Tian, B., Zhang, H.Q., Xu, T., Li, H.: Generalized (\(2+1\))-dimensional Gardner model: bilinear equations, Bäcklund transformation, Lax representation and interaction mechanisms. Nonlinear Dyn. 67, 2279–2290 (2012)

    Article  MATH  Google Scholar 

  31. Wang, Y.P., Tian, B., Wang, M., Wang, Y.F., Sun, Y., Xie, X.Y.: Bäcklund transformations and soliton solutions for a (\(2+1\))-dimensional Korteweg–de Vries-type equation in water waves. Nonlinear Dyn. 81, 1815–1821 (2015)

    Article  MATH  Google Scholar 

  32. Lü, X.: New bilinear Bäcklund transformation with multisoliton solutions for the (\(2+1\))-dimensional Sawada-Kotera model. Nonlinear Dyn. 76, 161–168 (2014)

    Article  MATH  Google Scholar 

  33. Huang, Y.: New no-traveling wave solutions for the Liouville equation by Bäcklund transformation method. Nonlinear Dyn. 72, 87–90 (2013)

    Article  Google Scholar 

  34. Fan, E.G., Chow, K.W.: Darboux covariant Lax pairs and infinite conservation laws of the (\(2+1\))-dimensional breaking soliton equation. J. Math. Phys. 52, 023504 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fan, E.G.: The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials. Phys. Lett. A 375, 493–497 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fan, E.G., Hon, Y.C.: Super extension of Bell polynomials with applications to supersymmetric equations. J. Math. Phys. 53, 013503 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wadati, M., Sanuki, H., Konno, K.: Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws. Prog. Theor. Phys. 53, 419–436 (1975)

    Article  MATH  Google Scholar 

  38. Konno, K., Wadati, M.: Simple derivation of Bäcklund transformation from Riccati form of inverse method. Prog. Theor. Phys. 53, 1652–1656 (1975)

  39. Ma, W.X.: Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 379, 1975–1978 (2015)

    Article  MathSciNet  Google Scholar 

  40. Ma, W.X., Qin, Z.Y., Lü, X.: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84, 923–931 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lü, X., Ma, W.X.: Study of Lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 41474102. The first author thanks Dr. Yang Li and Dr. Qinglong He of HIT for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonglong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Han, B. The Riemann–Bäcklund method to a quasiperiodic wave solvable generalized variable coefficient (\(\varvec{2+1}\))-dimensional KdV equation. Nonlinear Dyn 87, 2661–2676 (2017). https://doi.org/10.1007/s11071-016-3219-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3219-x

Keywords

Mathematics Subject Classification

Navigation