Skip to main content
Log in

On the contact interaction between two rectangular plates

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A mathematical model of contact interaction between two plates is presented, considering certain types of nonlinearity of each of the plates. Stress–strain state (SSS) of the interacting structural members is analyzed by the method of variational iterations, and the theorem of convergence of this method is provided. An iterative procedure for solving contact problems is developed and its convergence is also proved. Physical nonlinearity is considered by means of the method of variable parameters of elasticity. The SSS of a two-layer system of rectangular plates, depending on a type of boundary conditions as well as distances between plates, is investigated and supplemented with stress–strain curves \(\sigma _i^{(i)} (e_i^{(i)} )\)for each of the plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Hertz, H.: Gesammelte Werke. Bd. 1. Leipzig (1895)

  2. Carrera, E.: Single vs multilayer plate modellings on the basis of Reissner’s mixed theorem. AIAA J. 38(2), 342–352 (2000)

    Article  Google Scholar 

  3. Reissner, E.: On a certain mixed variational theory and a proposed applications. Int. J. Numer. Methods Eng. 20, 1366–1368 (1984)

    Article  MATH  Google Scholar 

  4. Reissner, E.: On a mixed variational theorem and on a shear deformable plate theory. Int. J. Numer. Methods Eng. 23, 193–198 (1986)

    Article  MATH  Google Scholar 

  5. Matsunaga, H.: Vibration and stability of thick plates on elastic foundations. J. Eng. Mech. 1(27), 27–341 (2000)

    Article  Google Scholar 

  6. Kant, T., Swaminathan, K.: Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories. J. Sound Vib. 241(2), 319–327 (2001)

    Article  Google Scholar 

  7. Rao, M., Scherbatiuk, K., Desai, Y., Shah, A.: Natural vibrations of laminated and sandwich plates. J. Eng. Mech. 130(11), 1268–1278 (2004)

    Article  Google Scholar 

  8. Kurpa, L.V., Timochenko, G.N.: Studying the free vibrations of multilayer plates with a complex planform. Int. Appl. Mech. 42(1), 103–109 (2006)

    Article  Google Scholar 

  9. Andrews, G.M., Massabo, R., Cox, B.N.: Elastic interaction of multiple delaminations in plates subject to cylindrical bending. Int. J. Solids Struct. 43, 855–886 (2006)

    Article  MATH  Google Scholar 

  10. Zubko, V.I., Shopa, V.M.: Calculation of simply supported circular plates in the statement of the problem of contact interaction in a package of two plates. Mech. Compos. Mater. 43(5), 409–418 (2007)

    Article  Google Scholar 

  11. Zubko, V.I.: Calculation of rigid clamped circular plates in the statement of the problem on contact interaction in a two-layer package. Mech. Compos. Mater. 43(1), 63–74 (2007)

  12. Vangipuram, P., Ganesan, N.: Buckling and vibration of rectangular composite viscoelastic sandwich plates under thermal loads. Compos. Struct. 77, 419–429 (2007)

    Article  Google Scholar 

  13. Pradeep, V., Ganesan, N.: Thermal buckling and vibration behavior of multi-layer rectangular viscoelastic sandwich plates. J. Sound Vib. 310, 169–183 (2008)

    Article  Google Scholar 

  14. Loredo, A., Castel, A.: A multilayer anisotropic plate model with warping functions for the study of vibrations reformulated from Woodcock’s work. J. Sound Vib. 332(1), 102–125 (2013)

    Article  Google Scholar 

  15. Altukhov, E.V., Simbratovich, E.V., Fomenko, M.V.: Steady-state vibrations of two-layer plates with rigidly fixed end faces and imperfect contact of the layers. J. Math. Sci. 18(1), 39–53 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoshyarmanesh, S., Bahrami, M.: Molecular dynamic study of pull-in instability of nano-switches. Adv. Nanoparticles 3, 122–132 (2014)

    Article  Google Scholar 

  17. Malekzadeh, K., Mozafari, A., Ghasemi, F.A.: Free vibration response of a multilayer smart hybrid composite plate with embedded SMA wires. Lat. Am. J. Solids Struct. 11, 279–298 (2014)

    Article  Google Scholar 

  18. Akoussan, K., Boudaoud, H., Daya, E.-M., Carrera, E.: Vibration modelling of multilayer composite structures with viscoelastic layers. Mech. Adv. Mater. Struct. 22, 136–149 (2015)

    Article  Google Scholar 

  19. Pietrzakowski, M.: An active functionally graded piezocomposite plate subjected to a stochastic pressure. Arch. Acoust. 40(1), 101–108 (2015)

    Article  Google Scholar 

  20. Bloch, M., Tsukrov, S.Y.: Axisymmetric contact thin cylindrical shells. Calc. Spat. Syst. Constr. Mech. 79–82 (1972) (in Russian)

  21. Detinko, F.M., Fastovsky, V.M.: Contact problem of two cylindrical shells of different lengths. Bull. USSR Acad. Sci. Mech. Solids 3, 118–121 (1974). (in Russian)

    Google Scholar 

  22. Detinko, F.M., Fastovsky, V.M.: On the contact on the shroud cylindrical shell. J. Appl. Mech. 11(2), 124–126 (1975). (in Russian)

    Google Scholar 

  23. Bloch, M.B., Tsukrov, S.Y.: The effect of changes in wall thickness on the axisymmetric contact of thin cylindrical shells. J. Appl. Mech. 10(4), 31–37 (1974). (in Russian)

    Google Scholar 

  24. Konveristov, G.B.: Axisymmetric contact problem for a cylindrical shell. Resist. Mater. Thorium Constr. 27, 119–124 (1975). (in Russian)

    Google Scholar 

  25. Konveristov, G.B., Spirina, N.I.: Contact stresses interaction of a cylindrical shell with a bandage. J. Appl. Mech. 15(2), 65–70 (1979). (in Russian)

    Google Scholar 

  26. Pankratova, N.D.: Inhomogeneous deformation of the thick-walled spherical shells at the hard contact layers. Bull. Ukr. Acad. Sci. Ser. A 6, 49–52 (1984). (in Russian)

    MATH  Google Scholar 

  27. Stepanov, R.D.: On the bending of the flat rectangular plate, reinforced by parallel ribs or legs. Ing. Sat. 68–79 (1950) (in Russian)

  28. Petrushenko, Y.Y.: Variational methods of investigation of strength, stability and dynamic response of spatial structures composed of laminated shells of complex geometry. Appl. Probl. Mech. Shells 76–64 (1989) (in Russian)

  29. Drumev, V.K.: Some studies on the stability of circular plates with elastic foundation top. Theor. Appl. Mech. 11(3), 94–101 (1980)

    MATH  Google Scholar 

  30. Varvak, P.M., Medvedev, N.M., Perel’muter, A.V., Pinsker, A.G.: Axisymmetric contact problem for several thin shells under finite displacements. Struct. Strength 3, 35–41 (1978)

    Google Scholar 

  31. Vasilenko, A.T., Grigorenko, A.M., Pankratova, N.D.: Problem solving of static thick-walled cylindrical shells with non-rigid contact layers. Bull. Ukr. Acad. Sci. Ser. A 11, 40–43 (1983). (in Russian)

    MATH  Google Scholar 

  32. Paimushin, V.N.: The variational methods for solving nonlinear problems of spatial coupling of deformable bodies. Bull. USSR Acad. Sci. 273, 1083–1086 (1963). (in Russian)

    MathSciNet  Google Scholar 

  33. Pit’ko, V.V.: Solution of some problems for a spherical shell. Build. Mech. Calc. Struct. 6, 21–26 (1973)

    Google Scholar 

  34. Fomina, N.I.: The problem of determining the lowest natural frequency of the cylindrical shell reinforced by annular transverse and longitudinal rectangular plates. Bull. Ukr. Acad. Sci. Ser. Nat. Techno. Mat. Science 8(4), 55–59 (1987). (in Russian)

    MATH  Google Scholar 

  35. Artyukhin, Y.P., Karasev, S.N.: Some contact problems of the theory of thin plates. Issled. Theory Plates Shells 10, 159–166 (1973)

    Google Scholar 

  36. Bloch, M., Tsukrov, S.Y.: On the axisymmetric contact of thin cylindrical shells. Appl. Mech. 9(11), 23–28 (1973)

    Google Scholar 

  37. Pelekh, B.L., Sukhorolsky, M.A.: Contact Problems of the Theory of Elastic Anisotropic Shells. Naukova Dumka, Moscov (1980). (in Russian)

  38. Martynenko, YuG: Trends of development of today’s gyroscopes. Soros J. Educ. 11, 120–127 (1997)

  39. Awrejcewicz, J., Krysko-jr., V.A., Yakovleva, T.V., Krysko,V.A., Noisy contact interactions of multi-layer mechanical structures coupled by boundary conditions. J. Sound Vib. (2016) (accepted)

  40. Sheremetev, A.G.: Fibre optical gyroscope. Radio Connect. 152, 1–8 (1987)

    Google Scholar 

  41. Zhuravlev, V.F., Klimov, D.M.: Wave Hemispherical Gyroscope. Nauka, Moscow (1985)

    Google Scholar 

  42. Merkur’ev, V.V., Podalkov, V.V.: Dynamics of Micromechanical and Wave Hemispherical Gyroscope. Fizmatlit, Moscow (2009)

    Google Scholar 

  43. Brozgul, I.I., Smirnov, E.L.: Vibrational Gyroscopes. Mashinostroyeniye, Moscow (1970)

    Google Scholar 

  44. Li, G., Aluru, R.: Linear, nonlinear and mixed-regime analysis of electrostatic MEMS. Sens. Actuators A Phys. 91, 278–291 (2001)

    Article  Google Scholar 

  45. Buks, E., Roukes, M.L.: Metastability and the casimir effect in micromechanical systems. Europhys. Lett. 54, 220–226 (2001)

  46. Zhang, W., Baskaran, K.L.: Turner effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor. Sens. Actuators A Phys. 102, 139–150 (2002)

  47. Kantor, B.J.: Nonlinear Problems of the Theory of Inhomogeneous Shallow Shells. Science. Dumka, Kiev (1971). (in Russian)

    MATH  Google Scholar 

  48. Kantor, B.J.: Contact Problems of the Nonlinear Theory of Shells. Science. Dumka, Kiev (1990). (in Russian)

    MATH  Google Scholar 

  49. Kirichenko, V.A., Krysko, V.A.: Substantiation of the variational iteration method in the theory of plates. Sov. Appl. Mech. 17(4), 366–370 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  50. Birger, I.A., Mavlyutov, R.R.: The Resistance of Materials. Nauka, Moscow (1986). (in Russian)

    Google Scholar 

  51. Ladyzenskaja, O.A., Ural’ceva, N.N.: Linear and Quasilinear Elliptic Equations. Academic, New York (1968)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Polish National Science Centre, MAESTRO 2, No. 2012/04/A/ST8/00738. The project has been also supported by the Grants RFBR 16-08-01108a and RFBR 16-01-00721a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Awrejcewicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krysko, A.V., Awrejcewicz, J., Zhigalov, M.V. et al. On the contact interaction between two rectangular plates. Nonlinear Dyn 85, 2729–2748 (2016). https://doi.org/10.1007/s11071-016-2858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2858-2

Keywords

Navigation