Skip to main content
Log in

Chaos and convergence of a family generalizing Homeier’s method with damping parameters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a family of parametric iterative methods for solving nonlinear equations, including Homeier’s scheme, is presented. Its local convergence is obtained and the dynamical behavior on quadratic polynomials of the resulting family is studied in order to choose those values of the parameter that ensure stable behavior. To get this aim, the analysis of fixed and critical points and the associated parameter plane show the dynamical richness of the family and allow us to find members of this class with good numerical properties and also other ones with pathological conduct. To check the stable behavior of the good selected ones, the discretized planar 1D-Bratu problem is solved. Some of those chosen members of the family achieve good results when Homeier’s scheme fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Amat, S., Busquier, S., Bermúdez, C., Magreñán, Á.A.: On the election of the damped parameter of a two-step relaxed Newton-type method. Nonlinear Dyn. doi:10.1007/s11071-015-2179-x

  2. Amat, S., Busquier, S., Bermúdez, C., Plaza, S.: On two families of high order Newton type methods. Appl. Math. Lett. 25, 2209–2217 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amat, S., Busquier, S., Plaza, S.: Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. 10, 3–35 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Babajee, D.K.R., Cordero, A., Torregrosa, J.R.: Study of iterative methods through the Cayley Quadratic Test. J. Comput. Appl. Math. 291, 358–369 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babajee, D.K.R., Thukral, R.: On a 4-point sixteenth-order king family of iterative methods for solving nonlinear equations. Int. J. Math. Math. Sci. 2012, ID 979245, 13 (2012)

  6. Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. AMS 11(1), 85–141 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boyd, J.P.: One-point pseudospectral collocation for the one-dimensional Bratu equation. Appl. Math. Comput. 217, 5553–5565 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bratu, G.: Sur les equation integrals non-lineaires. Bull. Math. Soc. Fr. 42, 113–142 (1914)

    MathSciNet  MATH  Google Scholar 

  10. Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. 2013, Article ID 780153 (2013)

  11. Chun, C., Lee, M.Y.: A new optimal eighth-order family of iterative methods for the solution of nonlinear equations. Appl. Math. Comput. 223, 506–519 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cordero, A., García-Maimó, J., Torregrosa, J.R., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cordero, A., Torregrosa, J.R., Vindel, P.: Dynamics of a family of Chebyshev–Halley type method. Appl. Math. Comput. 219, 8568–8583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fatou, P.: Sur les équations fonctionnelles. Bull. Soc. Math. Fr. 47, 161–271 (1919); 48, 33–94; 208–314 (1920)

  16. Gelfand, I.M.: Some problems in the theory of quasi-linear equations. Transl. Am. Math. Soc. Ser. 2, 295–381 (1963)

    Google Scholar 

  17. Gutiérrez, J.M., Hernández, M.A., Romero, N.: Dynamics of a new family of iterative processes for quadratic polynomials. J. Comput. Appl. Math. 233, 2688–2695 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Homeier, H.H.H.: On Newton-type methods with cubic convergence. J. Comput. Appl. Math. 176, 425–432 (2005)

  19. Jacobsen, J., Schmitt, K.: The Liouville–Bratu–Gelfand problem for radial operators. J. Differ. Equ. 184, 283–298 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jalilian, R.: Non-polynomial spline method for solving Bratu’s problem. Comput. Phys. Commun. 181, 1868–1872 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Julia, G.: Mémoire sur l’iteration des fonctions rationnelles. J. Math. Pure Appl. 8, 47–245 (1918)

    MATH  Google Scholar 

  22. Magreñán, Á.A.: Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mohsen, A.: A simple solution of the Bratu problem. Comput. Math. Appl. 67, 26–33 (2014)

    Article  MathSciNet  Google Scholar 

  24. Neta, B., Chun, C., Scott, M.: Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equation. Appl. Math. Comput. 227, 567–592 (2014)

    Article  MathSciNet  Google Scholar 

  25. Ostrowski, A.M.: Solution of Equations and Systems of Equations. Academic Press, New York (1960)

    MATH  Google Scholar 

  26. Petković, M., Neta, B., Petković, L.D., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, Amsterdam (2013)

    MATH  Google Scholar 

  27. Scott, M., Neta, B., Chun, C.: Basin attractors for various methods. Appl. Math. Comput. 218, 2584–2599 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sharma, J.R.: Improved Chebyshev–Halley method with sixth and eighth order of convergence. Appl. Math. Comput. 256, 119–124 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Varona, J.L.: Graphic and numerical comparison between iterative methods. Math. Intell. 24, 37–46 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wan, Y.Q., Guo, Q., Pan, N.: Thermo-electro-hydrodynamic model for electrospinning process. Int. J. Nonlinear Sci. Numer. Simul. 5, 5–8 (2004)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable suggestions and comments that have substantially improved the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Cordero.

Additional information

This research was supported by Ministerio de Economía y Competitividad MTM2014-52016-C02-2-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordero, A., Franques, A. & Torregrosa, J.R. Chaos and convergence of a family generalizing Homeier’s method with damping parameters. Nonlinear Dyn 85, 1939–1954 (2016). https://doi.org/10.1007/s11071-016-2807-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2807-0

Keywords

Navigation