Skip to main content
Log in

A partial Lagrangian method for dynamical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We develop a new approach termed as a discount free or partial Lagrangian method for construction of first integrals for dynamical systems of ordinary differential equations (ODEs). It is shown how one can utilize the Legendre transformation in a more general setting to provide the equivalence between a current value Hamiltonian and a partial or discount free Lagrangian when it exists. As a consequence, we develop a discount factor free Lagrangian framework to deduce reductions and closed-form solutions via first integrals for ODEs arising from economics by proving three important propositions. The approach is algorithmic and applies to many state variables of the Lagrangian. In order to show its effectiveness, we apply the method to models, one linear and two nonlinear, with one state variable. We obtain new exact solutions for the last model. The discount free Lagrangian naturally arises in economic growth theory and many other economic models when the control variables can be eliminated at the outset which is not always possible in optimal control theory applications of economics. We explain our method with the help of few widely used economic growth models. We point out the difference between this approach and the more general partial Hamiltonian method proposed earlier for a current value Hamiltonian (Naz et al. in Commun Nonlinear Sci Numer Simul 19:3600–3610, 2014) which is applicable in a general setting involving time, state, costate and control variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chiang, A.C.: Elements of Dynamic Optimization. McGraw Hill, New York (1992)

    Google Scholar 

  2. Ramsey, F.: A mathematical theory of saving. Econ. J. 38, 543–559 (1928)

    Article  Google Scholar 

  3. Lucas, R.: On the mechanics of economic development. J. Monet. Econ. 22, 3–42 (1988)

    Article  Google Scholar 

  4. Eisner, R., Strotz, R.: The Determinants of Business Investment. Impacts of Monetary Policy. Prentice-Hall, Englewood cliffs (1963)

    Google Scholar 

  5. Ben-Porath, Y.: The production of human capital and the life cycle of earnings. J. Polit. Econ. 75, 352–365 (1967)

    Article  Google Scholar 

  6. Barro, R.J., Sala-i-Martin, X.: Economic Growth. The MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  7. Rodriguez, A.: On the local stability of the solution to optimal control problems. J. Econ. Dyn. Control 28, 2475–2484 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brock, W.A., Scheinkman, J.: Global asymptotic stability of optimal control systems with applications to the theory of economic growth. J. Econ. Theory 12, 164–190 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rodriguez, A.: On the local stability of the stationary solution to variational problems. J. Econ. Dyn. Control 20, 415–431 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ragni, S., Diele, F., Marangi, C.: Steady-state invariance in high-order Runge–Kutta discretization of optimal growth models. J. Econ. Dyn. Control 34, 1248–1259 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mulligan, C.B., Sala-i-Martin, X.: Transitional dynamics in two-sector models of endogenous growth. Q. J. Econ. 108, 739–773 (1993)

    Article  Google Scholar 

  12. Ruiz-Tamarit, J.R.: The closed-form solution for a family of four-dimension nonlinear MHDS. J. Econ. Dyn. Control 32, 1000–1014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chilarescu, C.: An analytical solutions for a model of endogenous growth. Econ. Model. 25, 1175–1182 (2008)

    Article  Google Scholar 

  14. Chilarescu, C.: A closed-form solution to the transitional dynamics of the Lucas–Uzawa model. Econ. Model. 26, 135–138 (2009)

    Article  Google Scholar 

  15. Hiraguchi, R.: A note on the closed-form solution to the Lucas–Uzawa model with externality. J. Econ. Dyn. Control 33, 1757–1760 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guerrini, L.: A closed-form solution to the Ramsey model with logistic population growth. Econ. Model. 27, 1178–1182 (2010)

    Article  Google Scholar 

  17. Diele, F., Marangi, C., Ragni, S.: Exponential Lawson integration for nearly Hamiltonian systems arising in optimal control. Math. Comput. Simul. 81, 1057–1067 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ruiz-Tamarit, J.R., Ventura-Marco, M.: Solution to nonlinear MHDS arising from optimal growth problems. Math. Soc. Sci. 61, 86–96 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yasar, E.: Variational principles and conservation laws to the Burridge–Knopoff equation. Nonlinear Dyn. 54, 307–312 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kara, A.H., Mahomed, F.M.: Noether-type symmetries and conservation laws via partial Lagrangians. Nonlinear Dyn. 45, 367–383 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Naz, R., Mahomed, F.M., Mason, D.P.: Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics. Appl. Math. Comput. 205, 212–230 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gan, Y., Qu, C.: Approximate conservation laws of perturbed partial differential equations. Nonlinear Dyn. 61, 217–228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kara, A.H., Mahomed, F.M., Naeem, I., Wafo Soh, C.: Partial Noether operators and first integrals via partial Lagrangians. Math. Methods Appl. Sci. 30, 2079–2089 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Naz, R., Freire, I.L., Naeem, I.: Comparison of different approaches to construct first integrals for ordinary differential equations. Abstr. Appl. Anal. (2014). doi:10.1155/2014/978636

    MathSciNet  Google Scholar 

  25. Naeem, I., Mahomed, F.M.: Approximate partial Noether operators and first integrals for coupled nonlinear oscillators. Nonlinear Dyn. 57, 303–311 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Unal, G.: Approximate first integrals of weakly nonlinear, damped-driven oscillators with one degree of freedom. Nonlinear Dyn. 26, 309–329 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dorodnitsyn, V., Kozlov, R.: Invariance and first integrals of continuous and discrete Hamiltonian equations. J. Eng. Math. 66, 253–270 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Naz, R., Mahomed, F.M., Chaudhry, A.: A partial Hamiltonian approach for current value Hamiltonian systems. Commun. Nonlinear Sci. Numer. Simul. 19, 3600–3610 (2014)

    Article  MathSciNet  Google Scholar 

  29. Naz, R., Chaudhry, A., Mahomed, F.M.: Closed-form solutions for the Lucas–Uzawa model of economic growth via the partial Hamiltonian approach. Commun. Nonlinear Sci. Numer. Simul. 30(1), 299–306 (2016)

    Article  MathSciNet  Google Scholar 

  30. Mahomed, F.M., Roberts, J.A.G.: Characterization of Hamiltonian symmetries and their first integrals. Int. J. Non-Linear Mech. 74, 84–91 (2015)

    Article  Google Scholar 

  31. Legendre, A.M.: Réflexions sur differéntes manières de démostrer la théorie des paralléles ou le théorème sur la somme des trois angles du triangle. Mémoires de l’Academie des Sciences de Paris 13, 213–220 (1833)

    Google Scholar 

  32. Lansing, K.J.: Optimal redistributive capital taxation in a neoclassical growth model. J. Public Econ. 73(3), 423–453 (1999)

    Article  Google Scholar 

  33. Smith, W.T.: A closed form solution to the Ramsey model. Contrib. Macroecon. 6, 1–28 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

FMM is thankful to Dr. Shahid Amjad Chaudhry, Rector, Lahore School of Economics, Pakistan, for his warm hospitality during which time this work was commenced. He also is grateful to the NRF of South Africa for enabling research support through grants. RN is thankful to Lahore School of Economics for providing funds to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Naz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naz, R., Mahomed, F.M. & Chaudhry, A. A partial Lagrangian method for dynamical systems. Nonlinear Dyn 84, 1783–1794 (2016). https://doi.org/10.1007/s11071-016-2605-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2605-8

Keywords

Navigation