Skip to main content
Log in

Autoresonant dynamics of weakly coupled oscillators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the emergence of autoresonance (AR) in a two-degrees-of-freedom system consisting of an excited nonlinear actuator (the Duffing oscillator) linearly coupled to a passive linear oscillator. Two classes of system are considered: (1) In the system of the first type, a periodic force with constant (resonance) frequency is applied to the nonlinear (Duffing) oscillator with slowly time-decreasing linear stiffness; (2) in the system of the second type, the nonlinear oscillator with constant parameters is excited by a force with slowly increasing frequency. In both cases, the linear oscillator and the linear coupling are time-invariant, and the system is initially engaged in resonance. In the first step, the dynamics of the undamped system is analyzed. It is shown here that in the system of the first type, AR may occur in both oscillators, but in the system of the second type, the amount of energy transferred from the nonlinear oscillator is insufficient to excite high-energy motion in the attached oscillator. Different dynamical behavior arises due to different resonance properties of the systems. In the next step, an effect of viscous damping in the oscillators and the coupling is investigated. As this paper demonstrates, the response enhancement may be observed in the system of the first type on a bounded time interval provided that dissipation is weak enough. Explicit asymptotic approximations of the solutions are obtained. Close proximity of the derived approximations to exact (numerical) results is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vazquez, L., MacKay, R., Zorzano, M.P.: Localization and Energy Transfer in Nonlinear Systems. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  2. Vakakis, A.F., Gendelman, O., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. May, V., Kühn, O.: Charge and Energy Transfer Dynamics in Molecular Systems. Wiley, Weinheim (2011)

    Book  Google Scholar 

  4. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Pergamon Press, Oxford (1966)

    MATH  Google Scholar 

  5. Astashev, V.K., Babitsky, V.I.: Ultrasonic Processes and Machines. Springer, Berlin (2007)

    MATH  Google Scholar 

  6. Veksler, V.I.: A new method of accelerating relativistic particles. Comptes Rendus (Dokaldy) de l’Academie Sciences de l’URSS 43, 329–331 (1944)

    Google Scholar 

  7. McMillan, E.M.: The synchrotron—a proposed high energy particle accelerator. Phys. Rev. 68, 143–146 (1945)

    Article  Google Scholar 

  8. Chacón, R.: Control of Homoclinic Chaos by Weak Periodic Perturbations. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  9. Charman, A.E.: Random Aspects of Beam Physics and Laser-Plasma Interactions. University of California, Berkeley (2007)

    Google Scholar 

  10. Sinclair, A.T.: On the origin of commensurabilities amongst satellites of Saturn. Mon. Not. R. Astron. Soc. 160, 169–187 (1972)

  11. Naaman, O., Aumentado, J., Friedland, L., Wurtele, J.S., Siddiqi, I.: Phase-locking transition in a chirped superconducting Josephson resonator. Phys. Rev. Lett. 101, 117005 (2008)

    Article  Google Scholar 

  12. Fajans, J., Friedland, L.: Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators. Am. J. Phys. 69, 1096–1102 (2001)

    Article  Google Scholar 

  13. Neishtadt, A.I.: Averaging, passage through resonances, and capture into resonance in two-frequency systems. Russ. Math. Surv. 69, 771–843 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zelenyi, L.M., Neishtadt, A.I., Artemyev, A.V., Vainchtein, D.L., Malova, H.V.: Quasiadiabatic dynamics of charged particles in space plasma. Phys. Uspekhi 56, 347–394 (2013)

    Article  Google Scholar 

  15. Klughertz, G., Hervieux, P.-A., Manfredi, G.: Autoresonant control of the magnetization switching in single-domain nanoparticles. J. Phys. D Appl. Phys. 47, 345004 (2014)

    Article  Google Scholar 

  16. Barth, I., Friedland, L.: Multiresonant control of two-dimensional dynamical systems. Phys. Rev. E 76, 016211 (2007)

    Article  MathSciNet  Google Scholar 

  17. Gammaitoni, L., Vocca, H., Neri, I., Travasso, F., Orfei, F.: Vibration energy harvesting: linear and nonlinear oscillator approaches. In: Tan, Y.K. (ed.) Sustainable Energy Harvesting Technologies—Past, Present and Future. InTech, Croatia (2011)

    Google Scholar 

  18. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Weinheim (2004)

    MATH  Google Scholar 

  19. Manevitch, L.I., Kovaleva, A., Shepelev, D.: Non-smooth approximations of the limiting phase trajectories for the Duffing oscillator near 1:1 resonance. Phys. D 240, 1–12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Manevitch, L.I., Kovaleva, A., Manevitch, E.L., Shepelev, D.: Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 1. A non-dissipative oscillator. Commun. Nonlinear Sci. Numer. Simul. 16, 1089–1097 (2011)

    Article  MATH  Google Scholar 

  21. Manevitch, L.I., Kovaleva, A.: Nonlinear energy transfer in classical and quantum systems. Phys. Rev. E 87, 022904 (2013)

    Article  Google Scholar 

  22. Kovaleva, A., Manevitch, L.I.: Limiting phase trajectories and emergence of autoresonance in nonlinear oscillators. Phys. Rev. E 88, 024901 (2013)

    Article  Google Scholar 

  23. Kovaleva, A., Manevitch, L.I., Kosevich, Y.: Fresnel integrals and irreversible energy transfer in an oscillatory system with time-dependent parameters. Phys. Rev. E 83, 026602 (2011)

    Article  Google Scholar 

  24. Kovaleva, A., Manevitch, L.I.: Classical analog of quasilinear Landau–Zener tunneling. Phys. Rev. E 85, 016202 (2012)

    Article  Google Scholar 

  25. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support for this work from the Russian Foundation for Basic Research (Grant 14-01-00284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnessa Kovaleva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manevitch, L.I., Kovaleva, A. Autoresonant dynamics of weakly coupled oscillators. Nonlinear Dyn 84, 683–695 (2016). https://doi.org/10.1007/s11071-015-2517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2517-z

Keywords

Navigation