Skip to main content
Log in

Pinning control for synchronization of nonlinear complex dynamical network with suboptimal SDRE controllers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the state-dependent Riccati equation (SDRE) technique, in this paper, a suboptimal pinning control scheme is proposed to synchronize linearly coupled complex networks. The Lyapunov direct method is used to analyze the stability of the closed-loop control system, where it leads to a LMI criterion for pinning synchronization. It is shown that the time interval for synchronization of the proposed SDRE controllers is faster comparing with the results in the latest literatures. It is also shown that the minimum required coupling weights for the network synchronization in a finite desired time is decreased when some specified nodes in the network are pinned with the SDRE controllers. Based on the proposed criterion for pinned nodes selection, the network performances for different topological structures are investigated and the results are compared. The results indicate that the coupling weights for network synchronization in finite desired time in random Erdos Reiny networks are minimum when the pinned nodes are selected based on the minimum matching theorem. In small-world and scale-free networks, the minimum required coupling weight for network synchronization in finite desired time decreases when the highest degree nodes are pinned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Turci, L.F.R., Macau, E.E.: Performance of pinning-controlled synchronization. Phys. Rev. E 84(1), 011120 (2011)

    Article  Google Scholar 

  2. Jalili, M.: Enhancing synchronizability of diffusively coupled dynamical networks: a survey. IEEE Trans. Neural Netw. Learn. Syst. 24(7), 1009–1022 (2013)

    Article  Google Scholar 

  3. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control, vol. 60. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  4. Liu, Y.-Y., Slotine, J.-J., Barabási, A.-L.: Controllability of complex networks. Nature 473(7346), 167–173 (2011)

    Article  Google Scholar 

  5. Yuan, Z., Zhao, C., Di, Z., Wang, W.-X., Lai, Y.-C.: Exact controllability of complex networks. Nat. Commun. 4, 2447 (2013)

    Google Scholar 

  6. Zhao, C., Wang, W.-X., Liu, Y.-Y., Slotine, J.-J.: Intrinsic dynamics induce global symmetry in network controllability. Sci. Rep. 5, 8422 (2015)

    Article  Google Scholar 

  7. Pasqualetti, F., Zampieri, S., Bullo, F.: Controllability metrics, limitations and algorithms for complex networks. In: IEEE American control conference (ACC), 2014, pp. 3287–3292

  8. Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45(2), 429–435 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng, J., Sun, S., Xu, C., Zhao, Y., Wang, J.: The synchronization of general complex dynamical network via pinning control. Nonlinear Dyn. 67(2), 1623–1633 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu, C., Yu, J., Jiang, H., Teng, Z.: Pinning synchronization of weighted complex networks with variable delays and adaptive coupling weights. Nonlinear Dyn. 67(2), 1373–1385 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu, C., Jiang, H.: Pinning synchronization for directed networks with node balance via adaptive intermittent control. Nonlinear Dyn. 80, 1–13 (2014)

    Google Scholar 

  12. Sun, W., Lü, J., Chen, S., Yu, X.: Pinning impulsive control algorithms for complex network. Chaos Interdiscip. J. Nonlinear Sci. 24(1), 013141 (2014)

    Article  MathSciNet  Google Scholar 

  13. Qin, H., Wu, Y., Wang, C., Ma, J.: Emitting waves from defects in network with autapses. Commun. Nonlinear Sci. Numer. Simul. 23(1), 164–174 (2015)

  14. Cloutier, J.R.: State-dependent Riccati equation techniques: an overview. In: Proceedings of the American control conference, 1997, pp. 932–936

  15. Mracek, C.P., Cloutier, J.R.: Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method. Int. J. Robust Nonlinear Control 8(4–5), 401–433 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mobini, F., Ghaffari, A., Alirezaei, M.: Non-linear optimal control of articulated-vehicle planar motion based on braking utilizing the state-dependent Riccati equation method. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. (2015). doi:10.1177/0954407015571156

  17. ERDdS, P., WI, A.: On random graphs I. Publ. Math. Debr. 6, 290–297 (1959)

    Google Scholar 

  18. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  19. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cimen, T.: State-dependent Riccati equation (SDRE) control: a survey. In: Proceedings of the 17th world congress of the international federation of automatic control (IFAC), Seoul, Korea, July 2008, pp. 6–11

  21. Elloumi, S., Sansa, I., Braiek, N.B.: On the stability of optimal controlled systems with SDRE approach. In: 9th international multi-conference on systems, signals and devices (SSD), pp. 1–5. IEEE

  22. Lu, J., Ho, D.W., Cao, J.: A unified synchronization criterion for impulsive dynamical networks. Automatica 46(7), 1215–1221 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jia, F.L.: Function projective synchronization in complex dynamical networks. In: Advanced Materials Research 2014, pp. 1939–1942. Trans Tech Publ

  24. Tang, Y., Gao, H., Kurths, J., Fang, J-a: Evolutionary pinning control and its application in UAV coordination. IEEE Trans. Ind. Inform. 8(4), 828–838 (2012)

    Article  Google Scholar 

  25. Jalili, M., Sichani, O.A., Yu, X.: Optimal pinning controllability of complex networks: dependence on network structure. Phys. Rev. E 91(1), 012803 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Professor Jean-Jacques Slotine, Professor Gourang Chen and Dr. Mahdi Jalili for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soleyman Arebi.

Appendix

Appendix

Complete proof of Theorem 1

Consider the Lyapunov functional candidate:

$$\begin{aligned} V(t)=\frac{1}{2}\mathop {\sum }\limits _{i=1}^N e_i ^{T}(t)e_i (t) \end{aligned}$$
(35)

The derivative of V(t) along the trajectories of (6) is;

$$\begin{aligned} {\dot{V}}(t) = \mathop \sum \limits _{i = 1}^N e_{i}^{T}(t){\dot{e}_i}(t) \end{aligned}$$
(36)

Substitution of Eqs. (9) and (21) into (36) in expanded form forK, gives:

$$\begin{aligned} \dot{V}(t)= & {} \mathop \sum \limits _{i = 1}^N e_{i}^{T}(t)\left[ {\left( {f\left( {{e_i}(t),t} \right) + c\mathop \sum \limits _{j = 1}^N {l_{ij}}\varGamma {e_j}(t)} \right) }\right] \nonumber \\&-\,c\mathop \sum \limits _{i = 1}^N e_{i}^{T}(t){K_i}\left( e \right) \varGamma {e_i}(t) \end{aligned}$$
(37)

where, \(K_i \in R^{n\times n}\) is a matrix whose elements are calculated by Eq. (22) and link to \(e_j (t)\) with linking coupled variable \(\varGamma \). \(K_i\) equal to unpinned nodes is zero matrix.

Based on the Lipchitz condition in Sect. 2 and Kronecker product algebra, Eq. (37) may be rewritten as following form:

$$\begin{aligned} {\dot{V}}(t)\le & {} {e^T}(t)\big [ ( {{I_N} \otimes \Lambda \varGamma }) \nonumber \\&+\, {c}( {\mathrm{L} \otimes \varGamma } ) - {c}( {K \otimes \varGamma } ) \big ]{e_j}(t) \end{aligned}$$
(38)

We must have;

$$\begin{aligned} \left( {I_N \otimes \Lambda \varGamma }\right) +\hbox {c}\left( {\hbox {L}\otimes \varGamma } \right) -\hbox {c}\left( {K\otimes \varGamma } \right) <0 \end{aligned}$$
(39)

By substituting Eq. (21) into (30), the following criterion has been established:

$$\begin{aligned}&\left( {I_N \otimes \Lambda \varGamma } \right) +\hbox {c}\left( {\hbox {L}\otimes \varGamma } \right) \nonumber \\&\quad -\,\hbox {c}\left( {-R^{-1}(e)\bar{B} ^{T}(e)P(e)\otimes \varGamma } \right) <0 \end{aligned}$$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffari, A., Arebi, S. Pinning control for synchronization of nonlinear complex dynamical network with suboptimal SDRE controllers. Nonlinear Dyn 83, 1003–1013 (2016). https://doi.org/10.1007/s11071-015-2383-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2383-8

Keywords

Navigation