Skip to main content
Log in

Chaotic attitude analysis of a satellite via Lyapunov exponents and its robust nonlinear control subject to disturbances and uncertainties

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article investigates chaotic attitude maneuvers in a satellite for a range of parameters via Lyapunov exponents (LEs) and designs an appropriate robust nonlinear controller to ensure chaos suppression and achieve desired performance. Since the dynamic equations of satellite are described as a nonlinear non-autonomous system, an improved technique for calculating the LEs of such systems as a measure of chaos phenomenon is presented. Using the proposed algorithm, the chaotic behavior of satellite is proved within a range of its parameters. Then, by converting dynamic equations to canonical form, a robust nonlinear control is proposed using back-stepping sliding mode method. The stability of closed-loop system and its robustness against disturbances and uncertainties are guaranteed by proving a theorem. Moreover, by converting the system description into a compatible form with the conditions of the Melnikov theorem, an analytical approach is presented to ensure chaos suppression in the controlled system. Finally, the simulation results for different operational conditions of a three-axis stabilized satellite are provided to show the effectiveness of the proposed analyses and syntheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cohen, M.E., Hudson, D.L., Deedwania, P.C.: Applying continuous chaotic modeling to cardiac signal analysis. Eng. Med. Biol. Mag. IEEE 15, 97–102 (1996)

    Article  Google Scholar 

  2. Hamill, D.C., Jeffries, D.J.: Subharmonics and chaos in a controlled switched-mode power converter. Circuits Syst. IEEE Trans. 35, 1059–1061 (1988)

    Article  MathSciNet  Google Scholar 

  3. Hemati, N.: Strange attractors in brushless DC motors. Circuits Syst. I 41, 40–45 (1994)

    Article  Google Scholar 

  4. Ren, H., Liu, D.: Nonlinear feedback control of chaos in permanent magnet synchronous motor. Circuits Syst. II 53, 45–50 (2006)

    Article  Google Scholar 

  5. Mankin, J., Hudson, J.: Oscillatory and chaotic behaviour of a forced exothermic chemical reaction. Chem. Eng. Sci. 39, 1807–1814 (1984)

    Article  Google Scholar 

  6. Meehan, P., Asokanthan, S.: Control of chaotic motion in a spinning spacecraft with a circumferential nutational damper. Nonlinear Dyn. 17, 269–284 (1998)

    Article  MATH  Google Scholar 

  7. Gui, H., Jin, L., Xu, S., Zhang, J.: On the attitude stabilization of a rigid spacecraft using two skew control moment gyros. Nonlinear Dyn. 79, 2079–2097 (2014)

    Article  Google Scholar 

  8. Malekzadeh, M., Naghash, A., Talebi, H.: A robust nonlinear control approach for tip position tracking of flexible spacecraft. Aerosp. Electron. Syst. IEEE Trans. 47, 2423–2434 (2011)

    Article  Google Scholar 

  9. Xiao, B., Hu, Q., Ma, G.: Adaptive sliding mode backstepping control for attitude tracking of flexible spacecraft under input saturation and singularity. Proc. Inst. Mech. Eng. Part G 224, 199–214 (2010)

    Article  Google Scholar 

  10. Meng, Q., Zhang, T., Li, D.-c., Liang, J.-m., Liu, B., Song, J.-y.: Fault tolerant attitude control for flexible satellite with uncertainties and actuator saturation. Int. J. Adv. Robotic Syst. 10, (2013)

  11. Horri, N.M., Palmer, P., Roberts, M.: Gain-Scheduled inverse optimal satellite attitude control. Aerosp. Electron. Syst. IEEE Trans. 48, 2437–2457 (2012)

    Article  Google Scholar 

  12. Udwadia, F.E., Wanichanon, T., Cho, H.: Methodology for satellite formation-keeping in the presence of system uncertainties. J. Guidance Control Dyn. 37, 1611–1624 (2014)

    Article  Google Scholar 

  13. Cho, H., Udwadia, F.E.: Explicit control force and torque determination for satellite formation-keeping with attitude requirements. J. Guidance Control Dyn. 36, 589–605 (2013)

    Article  Google Scholar 

  14. Kemih, K., Kemiha, A., Ghanes, M.: Chaotic attitude control of satellite using impulsive control. Chaos Solitons Fractals 42, 735–744 (2009)

    Article  MATH  Google Scholar 

  15. Tsui, A.P., Jones, A.J.: The control of higher dimensional chaos: comparative results for the chaotic satellite attitude control problem. Phys. D 135, 41–62 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Meehan, P., Asokanthan, S.: Control of chaotic instabilities in a spinning spacecraft with dissipation using Lyapunov’s method. Chaos Solitons Fractals 13, 1857–1869 (2002)

    Article  MATH  Google Scholar 

  17. Baozeng, Y., Jiafang, X.: Chaotic attitude maneuvers in spacecraft with a completely liquid-filled cavity. J. Sound Vib. 302, 643–656 (2007)

  18. Liu, Y.-Z., Yu, H.-J., Chen, L.-Q.: Chaotic attitude motion and its control of spacecraft in elliptic orbit and geomagnetic field. Acta Astronautica 55, 487–494 (2004)

    Article  Google Scholar 

  19. Chen, L.-Q., Liu, Y.-Z.: Chaotic attitude motion of a magnetic rigid spacecraft and its control. Int. J. Non-linear Mech. 37, 493–504 (2002)

    Article  MATH  Google Scholar 

  20. Iñarrea, M.: Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit. Chaos Solitons Fractals 40, 1637–1652 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tong, X., Tabarrok, B., Rimrott, F.P.J.: Chaotic motion of an asymmetric gyrostat in the gravitational field. Int. J. Non-Linear Mech. 30, 191–203 (1995). 5//

    Article  MATH  MathSciNet  Google Scholar 

  22. Kaplan, M.H.: Modern Spacecraft Dynamics and Control, vol. 1. Wiley, New York (1976)

    Google Scholar 

  23. Kuang, J., Tan, S., Arichandran, K., Leung, A.: Chaotic dynamics of an asymmetrical gyrostat. Int. J. Non-linear Mech. 36, 1213–1233 (2001)

    Article  MATH  Google Scholar 

  24. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: determining Lyapunov exponents from a time series. Phys. 16D 32, 285–317 (1985)

  25. Udwadia, F.E., von Bremen, H.F.: Computation of Lyapunov characteristic exponents for continuous dynamical systems. Zeitschrift für angewandte Mathematik und Physik ZAMP 53, 123–146 (2002)

    Article  MATH  Google Scholar 

  26. Von Bremen, H.F., Udwadia, F.E., Proskurowski, W.: An efficient QR based method for the computation of Lyapunov exponents. Phys. D 101, 1–16 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Udwadia, F.E., Wanichanon, T.: Control of uncertain nonlinear multibody mechanical systems. J. Appl. Mech. 81, 041020 (2014)

    Article  Google Scholar 

  28. Ioannou, P.A., Fidan, B.: Adaptive Control Tutorial, vol. 3600. Society for industrial and applied mathematics Philadelphia, PA (2006)

    Book  MATH  Google Scholar 

  29. Yau, H.-T.: Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control. Mech. Syst. Signal Process. 22, 408–418 (2008)

    Article  Google Scholar 

  30. Mel’nikov, VKm: On the stability of a center for time-periodic perturbations. Trudy moskovskogo matematicheskogo obshchestva 12, 3–52 (1963)

    Google Scholar 

  31. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, vol. 2. Springer, Berlin (2003)

    MATH  Google Scholar 

  32. Holmes, P.J., Marsden, J.E.: Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups, DTIC Document 1981

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ataei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faramin, M., Ataei, M. Chaotic attitude analysis of a satellite via Lyapunov exponents and its robust nonlinear control subject to disturbances and uncertainties. Nonlinear Dyn 83, 361–374 (2016). https://doi.org/10.1007/s11071-015-2333-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2333-5

Keywords

Navigation