Skip to main content
Log in

From the solutions to construct the Schrödinger-like equation with source term and its numerical simulations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We present a brand new method to construct the Schrödinger-like equations from a solution in this paper. Some Schrödinger-like equations with sources are derived by using a generalized solution, which have the form \(i\frac{\partial \Psi }{\partial x}+\frac{1}{2}\frac{\partial ^2\Psi }{\partial t^2}+|\Psi |^2\Psi +\alpha (x,t)\Psi +\beta (x,t)e^{ipx}=0\). The abundant analytical solutions of the Schrödinger-like equations are considered, including the bright rogue wave solution, dark rogue wave solution, Bell-shaped soliton solution, the interactions of two solitons, and other special soliton solutions. And we prove that the equation with source term has a weak solution. At last, the numerical simulations on the evolution and solitons collision of rogue wave solutions are performed to verify the prediction of the analytical formulations. The results could be of interest in such diverse fields as Bose–Einstein condensates, nonlinear fibers, and superfluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  2. Abdullaev, F.K., Gammal, A., Tomio, L., Frederico, T.: Stability of trapped Bose–Einstein condensates. Phys. Rev. A 63, 043604 (2001)

    Article  Google Scholar 

  3. Gatz, S., Herrmann, J.: Soliton propagation and soliton collision in double-doped fibers with a non-Kerr-like nonlinear refractive-index change. Opt. Lett. 17, 484–486 (1992)

    Article  Google Scholar 

  4. Ablowitz, M.J., Clarkson, P.A.: Soliton, Nonlinear Evolution Equation and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  5. Mel’nikov, V.K.: Wave emission and absorption in a nonlinear integrable system. Phys. Lett. A 118, 22–24 (1986)

    Article  MathSciNet  Google Scholar 

  6. Mel’nikov, V.K.: Exact solutions of the Korteweg-de Vries equation with a self-consistent source. Phys. Lett. A 128, 488–492 (1988)

    Article  MathSciNet  Google Scholar 

  7. Mel’nikov, V.K.: Integration method of the Korteweg-de Vries equation with a self-consistent source. Phys. Lett. A 133, 493–496 (1988)

    Article  MathSciNet  Google Scholar 

  8. Zeng, Y.B., Ma, W.X., Lin, R.L.: Integration of the soliton hierarchy with self-consistent sources. J. Math. Phys. 41, 5453–5489 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ma, W.X.: Soliton, positon and negaton solutions to a Schrödinger self-consistent source equation. J. Phys. Soc. Jpn. 72, 3017–3019 (2003)

    Article  MATH  Google Scholar 

  10. Ma, W.X.: Positon and Negaton solutions to a Schrodinger self-consistent sources. Chaos Solitons Fractals 26, 1453–1458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrodinger equation. Phys. Rev. E 80, 026601 (2009)

    Article  Google Scholar 

  12. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    Article  MATH  Google Scholar 

  13. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer, New York (1999)

    MATH  Google Scholar 

  14. Chen, H.H., Liu, C.S.: Nonlinear wave propagation in inhomogeneous media is studied analytically in the model of the nonlinear Schrodinger equation. Phys. Rev. Lett. 37, 693 (1976)

    Article  MathSciNet  Google Scholar 

  15. Ankiewicz, A.: Rogue ocean waves. http://demonstrations.wolfram.com (2009)

  16. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Triangular rogue wave cascades. Phys. Rev. E 86, 056602 (2009)

    Google Scholar 

  17. Ma, Y.C.: The perturbed plane-wave solution of the cubic Schrodinger equation. Stud. Appl. Math. 60, 43–58 (1979)

    Article  MathSciNet  Google Scholar 

  18. Akhmediev, N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear Schrodinger equation. Theor. Math. Phys. 69, 1089–1093 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Voronovich, V.V., Shrira, V.I., Thomas, G.: Can bottom friction suppress ‘freak wave’ formation? J. Fluid Mech. 604, 263–296 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Bespalov, V.I., Talanov, V.I.: Filamentary Structure of Light Beams in Nonlinear Media. JETP Lett. 3, 307 (1966)

    Google Scholar 

  21. Muller, P., Garrett, C., Osborne, A.: Rogue wave. Oceanography 18, 66–75 (2005)

    Article  Google Scholar 

  22. Kharif, C., Pelinovsky, E.: Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B Fluids 22, 603–635 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kurkin, A.A., Pelinovsky, E.N.: Killer-Waves: Facts, Theory, and Modeling, Book in Russian. Nizhny Novgorod, Russia (2004)

    Google Scholar 

  24. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Article  Google Scholar 

  25. Li, H.M., Ge, L., He, J.R.: Nonautonomous bright solitons and soliton collisions in a nonlinear medium with an external potential. Chin. Phys. B 21, 050512 (2012)

    Article  Google Scholar 

  26. He, J.R., Yi, L., Li, H.M.: Self-similar propagation and asymptotic optical waves in nonlinear waveguides. Phys. Rev. E 90, 013202 (2014)

    Article  Google Scholar 

  27. Yan, Z.Y., Jiang, J.D.: Matter-wave solutions in Bose–Einstein condensates with harmonic and Gaussian potentials. Phys. Rev. E 85, 056608 (2012)

    Article  Google Scholar 

  28. Yan, Z.Y.: Nonautonomous “rogons” in the inhomogeneous nonlinear Schrödinger equation with variable coeffcients. Phys. Lett. A 374, 672–679 (2010)

    Article  MATH  Google Scholar 

  29. Zhao, L.C.: Dynamics of nonautonomous rogue waves in Bose–Einstein condensate. Ann. Phys. 329, 73–79 (2013)

    Article  MATH  Google Scholar 

  30. Michelle, S., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Zhou, Q., Biswas, A.: Optical solitons in dwdm system with four-wave mixing. Optoelectron. Adv. Mater. 9, 14–19 (2015)

    Google Scholar 

  31. Vega-Guzman, J., Zhou, Q., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Biswas, A.: Optical solitons in cascaded system with spatio-temporal dispersion by ansatz approach. J. Optoelectron. Adv. Mater. 17, 165–171 (2015)

    Google Scholar 

  32. Guzman, J.V., Zhou, Q., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Biswas, A.: Optical soliton in cascaded system with spatio-temporal dispersion. J. Optoelectron. Adv. Mater. 17, 74–81 (2015)

    Google Scholar 

  33. Jose-Vega., G., Hilal, E.M., Alshaery, A.A., Bhrawy, A.H., Mahmood, M.F., Moraru, L., Biswas, A.: Thirring optical solitons with spatio-temporal dispersion. In: Proceedings of the Romanian Academy, Series A, vol. 16, pp. 41–46 (2015)

  34. Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Biswas, A.: Optical solitons in magneto-optic waveguides with spatio-temporal dispersion. Frequenz 68, 445–451 (2014)

    Article  Google Scholar 

  35. Vega-Guzman, J., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Mahmood, M.F., Moraru, L., Biswas, A.: Optical soliton perturbation in magneto-optic waveguides with spatio-temporal dispersion. J. Optoelectron. Adv. Mater. 16, 1063–1070 (2014)

    Google Scholar 

  36. Alshaery, A.A., Hilal, E.M., Banaja, M.A., Alkhateeb, S.A., Moraru, L., Biswas, A.: Optical solitons in multiple-core couplers. J. Optoelectron. Adv. Mater. 16, 750–758 (2014)

    Google Scholar 

  37. Savescu, M., Hilal, E.M., Alshaery, A.A., Bhrawy, A.H., Moraru, L., Biswas, A.: Optical solitons with quadratic nonlinearity and spatio-temporal dispersion. J. Optoelectron. Adv. Mater. 16, 619–623 (2014)

    Google Scholar 

  38. Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Manrakhan, W., Savescu, M., Biswas, A.: Dispersive optical solitons with Schridinger–Hirota equation. J. Nonlinear Opt. Phys. Mater. 23, 1450014 (2014)

    Article  Google Scholar 

  39. Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Khan, K.R., Mahmood, M.F., Biswas, A.: Optical solitons in nonlinear directional couplers with spatio-temporal dispersion. J. Mod. Opt. 61, 442–459 (2014)

    Article  MathSciNet  Google Scholar 

  40. Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Moraru, L., Biswas, A.: Optical solitons in birefringent fibers with four-wave mixing for parabolic law nonlinearity. J. Optoelectron. Adv. Mater. 9, 10–13 (2015)

    Google Scholar 

  41. Mirzazadeh, M., Eslami, M., Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Biswas, A.: Optical solitons in dwdm system with spatio-temporal dispersion. J. Nonlinear Opt. Phys. Mater. 24, 1550006 (2015)

    Article  Google Scholar 

  42. Bhrawy, A.H., Alshaary, A.A., Hilal, E.M., Milovic, D., Moraru, L., Savescu, M., Biswas, A.: Optical solitons with polynomial and triple power law nonlinearities and spatio-temporal dispersion. Rom. Acad. Ser. A 15, 235–240 (2014)

    Google Scholar 

  43. Biswas, A., Bhrawy, A.H., Abdelkawy, M.A., Alshaery, A.A., Hilal, E.M.: Symbolic computation of some nonlinear fractional differential equations. Rom. Acad. Ser. A 59, 433–442 (2014)

    Google Scholar 

  44. Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Biswas, A.: Optical solitons in birefringent fibers with four-wave mixing for kerr law nonlinearity. Rom. Acad. Ser. A 59, 582–589 (2014)

    Google Scholar 

  45. Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Khan, K.R., Mahmood, M.F., Biswas, A.: Optical solitons in nonlinear directional couplers with spatio-temporal dispersion. J. Mod. Opt. 61, 442–459 (2014)

    Article  MathSciNet  Google Scholar 

  46. Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Manrakhan, W., Savescu, M., Biswas, A.: Dispersive optical solitons with Schrodinger–Hirota equation. J. Nonlinear Opt. Phys. Mater. 23, 1450014 (2014)

    Article  Google Scholar 

  47. Savescu, M., Hilal, E.M., Alshaery, A.A., Bhrawy, A.H., Moraru, L., Biswas, A.: Optical solitons with quadratic nonlinearity and spatio-temporal dispersion. J. Optoelectron. Adv. Mater. 16, 619–623 (2014)

    Google Scholar 

  48. Alshaery, A.A., Bhrawy, A.H., Hilal, E.M., Biswas, A.: Bright and singular solitons in quadratic nonlinear media. J. Electromagn. Waves 28, 275–280 (2014)

    Article  Google Scholar 

  49. Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Savescu, M., Milovic, D., Khan, K.R., Mahmood, M.F., Jovanoski, Z., Biswas, A.: Optical solitons in birefringent fibers with spatiotemporal dispersion. Optik 125, 4935–4944 (2014)

    Article  Google Scholar 

  50. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tu, G.Z.: The trace identity, a powerful tool of constructing the Hamiltonian structure of integrable system. J. Math. Phys. 30(2), 330–338 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  52. Gu, C.H., Guo, B.L., Li, Y.S., et al.: Soliton Theory and Its Application. Springer, New York (1990)

    Google Scholar 

  53. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Nonlinear Evolution Equations of Physical Significance. Phys. Rev. Lett. 31, 125–127 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  54. Peregrine, D.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B 25, 16–43 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  55. Serkin, V.N., Hasegawa, A.: Novel Soliton Solutions of the Nonlinear Schrödinger Equation Model. Phys. Rev. Lett. 85, 4502 (2000)

    Article  Google Scholar 

  56. Serkin, V.N., Hasegawa, A.: Soliton management in the nonlinear Schrödinger equation model with varying dispersion, nonlinearity, and gain. JETP Lett. 72, 89–92 (2000)

    Article  Google Scholar 

  57. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Article  Google Scholar 

  58. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Solitary waves in nonautonomous nonlinear and dispersive systems: nonautonomous solitons. J. Mod. Opt. 57, 1456–1472 (2010)

    Article  MATH  Google Scholar 

  59. Sulem, C., Sulem, P.L.: The Nonlinear Schröinger Equation: Self-Focusing and Wave Collapse. Springer, New York (1999)

    Google Scholar 

  60. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  61. Malomed, B.A.: Solition Management in Periodic Systems. Springer, New York (2006)

    Google Scholar 

  62. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B 7, R53–72 (2005)

    Article  Google Scholar 

  63. Carretero-Gonzalez, R., Frantzeskakis, D.J., Kevrekidis, P.G.: Nonlinear waves in Bose–Einstein condensates: physical relevance and mathematical techniques. Nonlinearity 21, R139–202 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Yan, Z.Y.: Vector financial rogue waves. Phys. Lett. A 375, 4274 (2011)

    Article  MATH  Google Scholar 

  65. Pitaevskii, L.P., Stringari, S.: Bose–Einstein Condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  66. Brazhnyi, V.A., Konotop, V.V.: Theory of nonlinear matter waves in optical lattices. Mod. Phys. Lett. B 18, 627 (2004)

    Article  Google Scholar 

  67. Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-Gonzalez, R.: Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment. Springer, New York (2008)

    Book  Google Scholar 

  68. Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247–305 (2011)

    Article  Google Scholar 

  69. Ponomarenko, S.A., Agrawal, G.P.: Do solitonlike self-similar waves exist in nonlinear optical media? Phys. Rev. Lett. 97, 013901 (2006)

    Article  Google Scholar 

  70. Kivshar, Y., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, New York (2003)

    Google Scholar 

  71. Belmonte-Beitia, J., Perez-Garca, V.M., Vekslerchik, V., Konotop, V.V.: Localized nonlinear waves in systems with time-and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)

    Article  Google Scholar 

  72. Yin, J.L., Zhao, L.W.: Dynamical behaviors of the shock compacton in the nonlinearly Schrödinger equation with a source term. Phys. Lett. A 378, 3516–3522 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 2013020056) and National Natural Science Foundation of China (Grant No. 11301349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fajun Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F. From the solutions to construct the Schrödinger-like equation with source term and its numerical simulations. Nonlinear Dyn 82, 249–257 (2015). https://doi.org/10.1007/s11071-015-2153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2153-7

Keywords

Navigation