Skip to main content
Log in

Anti-controlling Hopf bifurcation in a type of centrifugal governor system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Anti-controlling Hopf bifurcation is considered as one way to design Hopf limit circle into a dynamical system, and the oscillatory behavior of Hopf limit circle can be beneficial in many practical applications such as mixing, low-energy navigation control and fault diagnosis. In this paper, the feedback control problem of designing Hopf bifurcation in a centrifugal governor system is addressed. A feedback control method is proposed to achieve three aspects of controlling problem including existence, stability, and adjusting amplitude and frequency of the limit cycle to be designed. An explicit criterion of Hopf bifurcation including eigenvalue assignment and transversality conditions, without using eigenvalue computation, is utilized to derive the linear gains responsible for control of the bifurcation existence. The center manifold theory and normal form reduction is utilized to derive the nonlinear gains responsible for control of the stability of the created limit circle. The expressions of the approximate amplitude and frequency of the limit cycle are developed to derive the nonlinear gains responsible for controls of amplitude and frequency of the limit cycle. Numerical simulations for a centrifugal governor system show that Hopf limit cycle with desired properties can be created at any a pre-specified parameter point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abed, E.H., Fu, J.H.: Local feedback stabilization and bifurcation control, part I. Hopf bifurcation. Syst. Control Lett. 7, 11–17 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, G., Moiola, J.L., Wang, H.O.: Bifurcation control: theories, methods, and applications. Int. J. Bifurc. Chaos 10, 511–548 (2000)

    MATH  MathSciNet  Google Scholar 

  3. Liu, F., Guan, Z.H., Wang, H.O.: Controlling bifurcations and chaos in TCP–UDP–RED. Nonlinear Anal. Real World Appl. 11, 1491–1501 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alomari, M.M., Zhu, J.G.: Bifurcation control of subsynchronous resonance using TCSC. Commun. Nonlinear Sci. Numer. Simul. 16, 2363–2370 (2011)

    Article  Google Scholar 

  5. Wang, H.O., Abed, E.H., Hamdan, A.M.A.: Bifurcations, chaos and crises in voltage collapse of a model power system. IEEE Trans. Circuits Syst. I 41, 294–302 (1994)

    Article  Google Scholar 

  6. Lee, H.C., Abed, E.H.: Washout filters in the bifurcation control of high alpha flight dynamics. In: Proceedings of 1991 American Control Conference, Boston, pp. 206–211 (1991)

  7. Cibrario, M., Lévine, J.: Saddle-node bifurcation control with application to thermal runaway of continuous stirred tank reactors. In: Proceedings of 1991 IEEE Conference Decision and Control, Brighton, UK, pp. 1551–1552 (1991)

  8. Wang, H.O., Chen, D., Chen, G.: Bifurcation control of pathological heart rhythms. In: Proceedings of IEEE Conference on Control Applications, Trieste, Italy, pp. 858–862 (1998)

  9. Raman, A., Mote Jr, C.D.: Effects of imperfection on the non-linear oscillations of circular plates spinning near critical speed. Int. J. Non-Linear Mech. 36, 261–289 (2001)

    Article  MATH  Google Scholar 

  10. Abed, E.H., Wang, H.O., Chen, R.C.: Stabilization of period doubling bifurcations and implications for control of chaos. Phys. D 70, 154–164 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Berns, D.W., Moiola, J.L., Chen, G.: Feedback control of limit cycle amplitude from a frequency domain approach. Automatica 34, 1567–1573 (1998)

    Article  MATH  Google Scholar 

  12. Li, C., Chen, G., Liao, X., Yu, J.: Hopf bifurcation in an Internet congestion control model. Chaos Solitons Fract. 19, 853–862 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, D., Wang, H.O., Chen, G.: Anti-control of Hopf bifurcation. IEEE Trans. Circuits Syst. I 48, 661–672 (2001)

    Article  MATH  Google Scholar 

  14. Alonso, D., Paolini, E., Moiola, J.L.: An experimental application of the anticontrol of Hopf bifurcations. Int. J. Bifurc. Chaos 11, 1977–1987 (2001)

    Article  Google Scholar 

  15. Wen, G.L., Xu, D.L.: Control algorithm for creation of Hopf bifurcations in continuous-time systems of arbitrary dimension. Phys. Lett. A 337, 93–100 (2005)

  16. Wen, G.L., Xu, H.D., Chen, Z.: Anti-controlling quasi-periodic impact motion of an inertial impact shaker system. J. Sound Vib. 329, 4040–4047 (2010)

    Article  Google Scholar 

  17. Wen, G.L., Xu, D.L., Han, X.: On creation of Hopf bifurcations in discrete-time nonlinear systems. Chaos 12, 350–355 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wen, G.L., Xu, D.L., Xie, J.H.: Controlling Hopf bifurcations of discrete-time systems in resonance. Chaos Solitons Fract. 23, 1865–1877 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wen, G.L., Xu, D.L., Xie, J.H.: Control of degenerate Hopf bifurcations in three-dimensional maps. Chaos 13, 486–494 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wei, Z.C., Yang, Q.G.: Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci. Appl. Math. Computat. 217, 422–429 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Cheng, Z.S.: Anti-control of Hopf bifurcation for Chen’s system through washout filters. Neurocomputing 73, 3139–3146 (2010)

    Article  Google Scholar 

  22. Tang, J.S., Han, F., Xiao, H., Wu, X.: Amplitude control of a limit cycle in a coupled van der Pol system. Nonlinear Anal. 71, 2491–2496 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Cui, Y., Liu, S.H., Tang, J.S., Meng, Y.M.: Amplitude control of limit cycles in Langford system. Chaos Solitons Fract. 42, 335–340 (2009)

    Article  MATH  Google Scholar 

  24. Dada, J.P., Chedjou, J.C., Domngang, S.: Amplitude and frequency control: stability of limit cycles in phase-shift and twin-T oscillators. Act. Passive Electron. Compon. 2008, 1–6 (2008)

    Article  Google Scholar 

  25. Pontryagin, L.S.: Ordinary Differential Equations. Addison-Wesley, MA (1962)

    MATH  Google Scholar 

  26. Liu, W.M.: Criterion of Hopf bifurcation without using eigenvalues. J. Math. Anal. Appl. 182, 250–255 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  28. Berns, D.W., Moiola, J.L., Chen, G.: Feedback control of limit cycle amplitude from a frequency domain approach. Automatica 34, 1567–1573 (1998)

    Article  MATH  Google Scholar 

  29. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Fund for Distinguished Young Scholars in China (No. 11225212), the National Natural Science Foundation of China (No. 11002052; 11372101), the Hunan Provincial Natural Science Foundation for Creative Research Groups of China (Grant No. 12JJ7001), and the Young Teacher Development Plan of Hunan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huidong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, G., Xu, H., Lv, Z. et al. Anti-controlling Hopf bifurcation in a type of centrifugal governor system. Nonlinear Dyn 81, 811–822 (2015). https://doi.org/10.1007/s11071-015-2031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2031-3

Keywords

Navigation