Skip to main content
Log in

Design and analysis of a chaotic maps-based three-party authenticated key agreement protocol

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An authenticated key agreement protocol is a protocol for information security over insecure networks. Due to the excellent properties of chaotic system, chaos-related cryptography has received a certain development, and recently, researchers have presented some three-party authenticated key agreement protocols based on the chaotic maps. Unfortunately, most of the chaotic maps-based key agreement protocols use a password to achieve the key agreement, and this leads to some security loopholes. First, the server has to store a sensitive password table, and it would be dangerous if the server was compromised or the password table was leaked. Besides, the low-entropy passwords are vulnerable to some password-related attacks, such as insider attack and password guessing attacks. In this paper, we design a communication- and computation-efficient chaotic maps-based three-party authenticated key agreement protocol without password and clock synchronization, and formally analyze the security using Burrows–Abadi–Needham logic. In addition to the formal analysis, we also prove that the presented protocol is free from most of the common attacks, and compare the performance and functionality with other related protocols. The result of the analysis and comparisons demonstrate that our protocol is more efficient and practical for real applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Liu, B., Peng, J.: Nonlinear dynamics. High Education Press, Beijing (2004)

    Google Scholar 

  2. Wang, X.Y., Wang, X.J., Zhao, J.F., Zhang, Z.F.: Chaotic encryption algorithm based on alternant of stream cipher and block cipher. Nonlinear Dyn. 63(4), 587–597 (2011)

    Article  MathSciNet  Google Scholar 

  3. Sheu, L.J.: A speech encryption using fractional chaotic systems. Nonlinear Dyn. 65(1–2), 103–108 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Wang, Y., Wong, K.W., Liao, X.F., Xiang, T.: A block cipher with dynamic S-boxes based on tent map. Commun. Nonlinear Sci. Numer. Simul. 14(7), 3089–3099 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Xiong, H., Chen, Z., Li, F.G.: New identity-based three-party authenticated key agreement protocol with provable security. J. Netw. Comput. Appl. 36(2), 927–932 (2013)

    Article  Google Scholar 

  6. He, D.B., Padhye, S., Chen, J.H.: An efficient certificateless two-party authenticated key agreement protocol. Comput. Math. Appl. 64(6), 1914–1926 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hölbl, M., Welzer, T., Brumen, B.: An improved two-party identity-based authenticated key agreement protocol using pairings. J. Comput. Syst. Sci. 78(1), 142–150 (2012)

    Article  MATH  Google Scholar 

  8. Lv, X.X., Li, H., Wang, B.C.: Group key agreement for secure group communication in dynamic peer systems. J. Parallel Distrib. Comput. 72(10), 1195–1200 (2012)

    Article  MATH  Google Scholar 

  9. He, D.B., Chen, J.H., Hu, J.: An ID-based client authentication with key agreement protocol for mobile client–server environment on ECC with provable security. Inf. Fusion 13(3), 223–230 (2012)

    Article  Google Scholar 

  10. Chen, T.H., Lee, W.B., Chen, H.B.: A round-and computation-efficient three-party authenticated key exchange protocol. J. Syst. Softw. 81(9), 1581–1590 (2008)

    Article  MathSciNet  Google Scholar 

  11. Xiao, D., Liao, X.F., Deng, S.J.: A novel key agreement protocol based on chaotic maps. Inf. Sci. 177(4), 1136–1142 (2007)

    Article  MathSciNet  Google Scholar 

  12. Han, S.: Security of a key agreement protocol based on chaotic maps. Chaos Solitons Fractals 38(3), 764–768 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Xiang, T., Wong, K.W., Liao, X.F.: On the security of a novel key agreement protocol based on chaotic maps. Chaos Solitons Fractals 40(2), 672–675 (2009)

    Article  MATH  Google Scholar 

  14. Xiao, D., Liao, X.F., Deng, S.J.: Using time-stamp to improve the security of a chaotic maps-based key agreement protocol. Inf. Sci. 178(6), 1598–1602 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Han, S., Chang, E.: Chaotic map based key agreement with/out clock synchronization. Chaos Solitons Fractals 39(3), 1283–1289 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tseng, H.R., Jan, R.H., Yang, W.: A chaotic maps-based key agreement protocol that preserves user anonymity. In: IEEE International Conference on Communications, 2009, ICC’09, pp. 1–6. Dresden, Germany (2009)

  17. Niu, Y.J., Wang, X.Y.: An anonymous key agreement protocol based on chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 16(4), 1986–1992 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yoon, E.J.: Efficiency and security problems of anonymous key agreement protocol based on chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 17(7), 2735–2740 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Xue, K.P., Hong, P.L.: Security improvement on an anonymous key agreement protocol based on chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 17(7), 2969–2977 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tan, Z.W.: A chaotic maps-based authenticated key agreement protocol with strong anonymity. Nonlinear Dyn. 72(1–2), 1–10 (2013)

    Google Scholar 

  21. Lee, C.C., Chen, C.L., Wu, C.Y., Huang, S.Y.: An extended chaotic maps-based key agreement protocol with user anonymity. Nonlinear Dyn. 69(1–2), 79–87 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. He, D.B., Chen, Y.T., Chen, J.H.: Cryptanalysis and improvement of an extended chaotic maps-based key agreement protocol. Nonlinear Dyn. 69(3), 1149–1157 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wang, X.Y., Zhao, J.F.: An improved key agreement protocol based on chaos. Commun. Nonlinear Sci. Numer. Simul. 15(12), 4052–4057 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yoon, E.J., Jeon, I.S.: An efficient and secure Diffie–Hellman key agreement protocol based on Chebyshev chaotic map. Commun. Nonlinear Sci. Numer. Simul. 16(6), 2383–2389 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lai, H., Xiao, J., Li, L., et al.: Applying semigroup property of enhanced Chebyshev polynomials to anonymous authentication protocol. Math. Probl. Eng. Article ID 454823, 17 pages(2012). doi:10.1155/2012/454823

  26. Zhao, F.J., Gong, P., Li, S., Li, M.G., Li, P.: Cryptanalysis and improvement of a three-party key agreement protocol using enhanced Chebyshev polynomials. Nonlinear Dyn. 74(1–2), 419–427 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Xie, Q., Zhao, J.M., Yu, X.Y.: Chaotic maps-based three-party password-authenticated key agreement scheme. Nonlinear Dyn. 74(4), 1021–1027 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Farash, M.S., Attari, M.A.: An efficient and provably secure three-party password-based authenticated key exchange protocol based on Chebyshev chaotic maps. Nonlinear Dyn. (2014, in press). doi:10.1007/s11071-014-1304-6

  29. Lee, C.C., Li, C.T., Hsu, C.W.: A three-party password-based authenticated key exchange protocol with user anonymity using extended chaotic maps. Nonlinear Dyn. 73(1), 125–132 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Li, C.T., Lee, C.C., Weng, C.Y.: An extended chaotic maps based user authentication and privacy preserving scheme against DoS attacks in pervasive and ubiquitous computing environments. Nonlinear Dyn. 74(4), 1133–1143 (2013)

    Article  MathSciNet  Google Scholar 

  31. Lee, C.C., Lou, D.C., Li, C.T., Hsu, C.W.: An extended chaotic-maps-based protocol with key agreement for multiserver environments. Nonlinear Dyn. 76(1), 853–866 (2014)

    Article  MathSciNet  Google Scholar 

  32. Lee, C.C., Hsu, C.W.: A secure biometric-based remote user authentication with key agreement scheme using extended chaotic maps. Nonlinear Dyn. 71(1), 201–211 (2013)

    Article  MathSciNet  Google Scholar 

  33. Zhang, L.H.: Cryptanalysis of the public key encryption based on multiple chaotic systems. Chaos Solitons Fractals 37(3), 669–674 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Xiao, D., Shih, F.Y., Liao, X.F.: A chaos-based hash function with both modification detection and localization capabilities. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2254–2261 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. Proc. R. Soc. Lond. A Math. Phys. Sci. 1989(426), 233–271 (1871)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61300220 & 61170296 & 61202462, the Research Fund of the State Key Laboratory of Software Development Environment, BUAA under Grant No. SKLSDE-2014KF-02, the China Postdoctoral Science Foundation Funded Project under Grant No. 2014M550590, the Scientific Research Fund of Hunan Provincial Education Department (Nos. 13C324 & 14A047), and the National Nature Science Foundation of Hunan province under Grant No. 13JJ3091.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiong Li or Jianwei Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Niu, J., Kumari, S. et al. Design and analysis of a chaotic maps-based three-party authenticated key agreement protocol. Nonlinear Dyn 80, 1209–1220 (2015). https://doi.org/10.1007/s11071-015-1937-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1937-0

Keywords

Navigation